Elektrischer Antrieb

Elektrischer Kompaktschlitten Hochsteife Ausführung

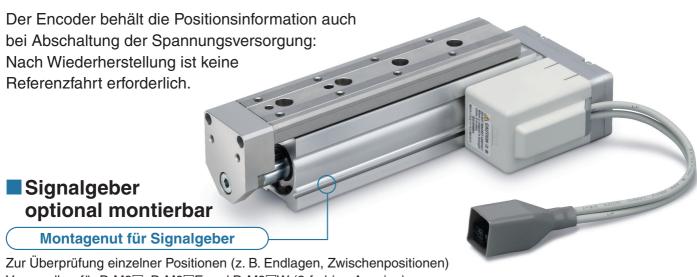
Verbesserte Positionierwiederholgenauigkeit durch den Einsatz eines Kugelumlaufspindel

Umkehrspiel max. 0,1 mm

Erhöhte vertikale Nutzlast

5-fach	oder	mehr

Größe	8	16	25
New LESYH	6	12	20
LESH	0,5	2	4

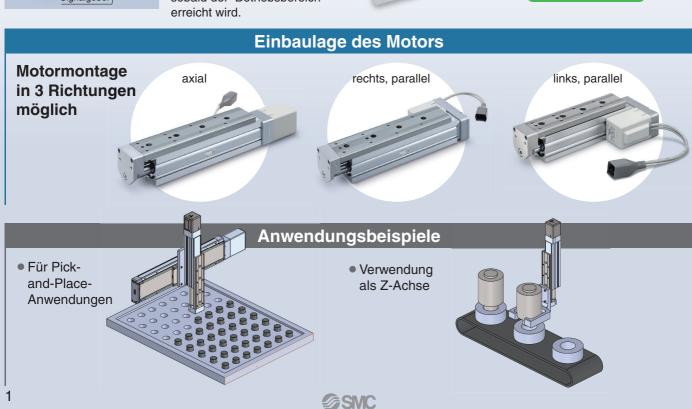


Kann mit kundenspezifischem Motor verwendet werden! **Motorlose Ausführung** Kompatible Motoren von 18 Herstellern Mitsubishi Electric Corporation YASKAWA Electric Corporation SANYO DENKI CO., LTD. **OMRON** Corporation Panasonic Corporation **FANUC CORPORATION** NIDEC SANKYO CORPORATION FUJI ELECTRIC CO., LTD. KEYENCE CORPORATION MinebeaMitsumi Inc. ORIENTAL MOTOR Co. Ltd. Shinano Kenshi Co., Ltd. Rockwell Automation, Inc. FASTECH Co., Ltd. **Beckhoff Automation GmbH** (Allen-Bradley) Siemens AG Delta Electronics, Inc. **ANCA Motion**

Schrittmotor (24 VDC) mit batterielosem Absolut-Encoder

Ermöglicht den Neustart aus der letzten Stopp-Position nach Wiederherstellung der Spannungsversorgung.

Verwendbar für D-M9□. D-M9□E und D-M9□W (2-farbige Anzeige)


* Die Signalgeber müssen separat bestellt werden. Für weitere Details siehe Web-Katalog.

Eine grüne Anzeige leuchtet. sobald der Betriebsbereich

Schrittmotor (24 VDC) mit batterielosem Absolut-Encoder

Elektrischer Kompaktschlitten, hochsteife Ausführung Serie LESYH□E

Modellauswahl

Auswahlverfahren

Positionieranwendung

Schritt 1

Überprüfen Sie die Nutzlast- Geschwindigkeit.

Überprüfen Sie die Zykluszeit.

Überprüfen Sie das zulässige Moment.

Auswahlbeispiel

Schritt 1 Überprüfen Sie das Verhältnis Nutzlast-Geschwindigkeit. < Geschwindigkeits-/Nutzlast-Diagramm> (Seite 4) Wählen Sie auf der Grundlage des Werkstückgewichts und der Geschwindigkeit das geeignete Modell aus dem Geschwindigkeits-/Nutzlast-Diagramms aus.

> Auswahlbeispiel) Das Modell LESYH16□EB-50 kann vorübergehend als mögliches Modell anhand des Diagramms auf der rechten Seite ausgewählt werden.

Schritt 2 Überprüfen Sie die Zykluszeit.

Berechnen Sie die Zykluszeit mit der folgenden Berechnungsmethode.

Zykluszeit:

T wird aus folgender Gleichung berechnet.

$$T = T1 + T2 + T3 + T4 [s]$$

• T1: Beschleunigungszeit T3: Verzögerungszeit können durch die folgende Gleichung berechnet werden.

• T2: Die Zeit mit konstanter Geschwindigkeit kann anhand der folgenden Gleichung berechnet werden.

$$T2 = \frac{L - 0.5 \cdot V \cdot (T1 + T3)}{V} [s]$$

• T4: Die Einschwingzeit ist abhängig von Bedingungen wie Motortyp, Last und der Positionierung. Berechnen Sie daher die Einstellzeit unter Berücksichtigung des folgenden Wertes.

$$T4 = 0.15 [s]$$

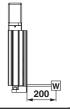
Berechnungsbeispiel)

T1 bis T4 können wie folgt ermittelt werden.

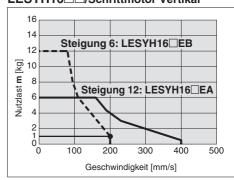
$$T3 = V/a2 = 200/3000 = 0.07 [s]$$

$$T2 = \frac{L - 0.5 \cdot V \cdot (T1 + T3)}{V}$$

$$=\frac{50-0.5\cdot 200\cdot (0.07+0.07)}{200}$$

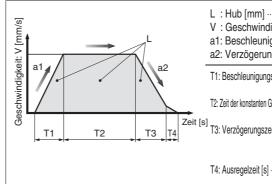

$$T4 = 0.15 [s]$$

Die Zykluszeit kann wie folgt berechnet werden.


$$T = T1 + T2 + T3 + T4$$

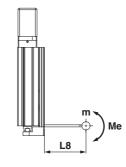
= 0,07 + 0,18 + 0,07 + 0,15

Betriebsbedingungen

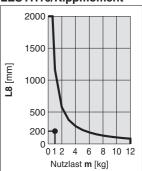

- Werkstückgewicht: 1 [kg] Werkstückmontage:
- Geschwindigkeit: 200 [mm/s]
- Einbaulage: Vertikal
- Hub: 50 [mm] Beschleunigung/
- Verlangsamung: 3000 [mm/s²]
- Zykluszeit: 0,5 s

LESYH16□□/Schrittmotor Vertikal

<Geschwindigkeits-Nutzlast-Diagramm>



- L: Hub [mm] (Betriebsbedingung) V: Geschwindigkeit [mm/s] (Betriebsbedingung)
- a1: Beschleunigung [mm/s²] ····· (Betriebsbedingung) a2: Verzögerung [mm/s²] ······· (Betriebsbedingung)
- T1: Beschleunigungszeit [s] · Zeit bis zum Erreichen der eingestellten Geschwindigkeit
- T2: Zeit der konstanten Geschwindigkeit [s] ·· Zeit, während der Antrieb mit konstanter Geschwindigkeit arbeitet T3: Verzögerungszeit [s] Zeit vom Beginn des Betriebs
 - mit konstanter Geschwindigkeit bis zum Stopp
 - Zeit bis zum Abschluss der Positionierung


Schritt 3 Überprüfen Sie das zulässige Moment.

- <Zulässiges statisches Moment> (Seite 4)
- <Zulässiges dynamisches Moment> (Seiten 6, 7)

Stellen Sie sicher, dass das auf den Antrieb wirkende Moment innerhalb des zulässigen Bereichs sowohl für die statischen als auch für die dynamischen Bedingungen liegt.

LESYH16/Kippmoment

<Zulässiges dynamisches Moment>

Auswahlverfahren

Schubanwendung

[ka]

Auswahlbeispiel

Betriebsbedingungen

- Vorschubkraft: 150 N
- Werkstückgewicht: 1 kg
- Geschwindigkeit: 100 mm/s
- Schubzeit + Betrieb (A): 1,5 s

• Einbaulage: Vertikal, aufwärts

Volle Zykluszeit (B): 10 s

Schritt 1 Überprüfen Sie die benötigte Kraft.

Berechnen Sie die ungefähre erforderliche Kraft für den Schubbetrieb.

• Hub: 100 mm

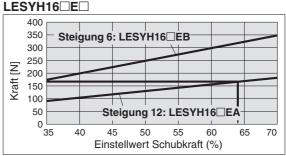
Auswahlbeispiel) • Vorschubkraft: 150 N

 Werkstückgewicht: 1 kg Die ungefähre benötigte Kraft beträgt 150 N + 10 N = 160 N. Wählen Sie ein Modell auf der Grundlage der ungefähren benötigten Kraft unter Berücksichtigung der Spezifikationen (Seite 27). Auswahlbeispiel auf der Grundlage der Spezifikationen)

- Ungefähre benötigte Kraft: 160 N
- Geschwindigkeit: 100 mm/s

Das Modell LESYH16 □ EA kann vorübergehend als mögliches Modell gewählt werden.

Berechnen Sie anschließend die erforderliche Kraft für den Schubbetrieb.


Wenn eine vertikal aufrechte Einbaulage verwendet wird, muss das Schlittengewicht des Antriebs beachtet werden. Auswahlbeispiel auf der Grundlage des Schlittengewichts)

> LESYH16□EA Schlittengewicht: 0,7 [kg] Die erforderliche Kraft beträgt 160 + 7 = 167 [N].

Schlittengewicht

cillitterige	SWICITE			[1/9]	
Modell	Hub [mm]				
	50	75	100	150	
LESYH8	0,2	0,3	_	_	
LESYH16	0,4	_	0,7	_	
LESYH25	0,9		1,3	1,7	

Wenn eine vertikal aufrechte Einbaulage verwendet wird, muss das Schlittengewicht des Antriebs beachtet werden.

<Schubkraftsollwert-Kraft-Diagramm>

Schritt 2 Überprüfen Sie die Schubkraft. <Schubkraftsollwert-Kraft-Diagramm> (Seite 5)

Wählen Sie ein Modell auf der Grundlage der erforderlichen Kraft und

beachten Sie dabei das Schubkraftsollwert-Kraft-Diagramm, um den Sollwert für die Schubkraft zu bestimmen.

Beispiel für die Auswahl anhand des Diagramms auf der rechten Seite)

Benötigte Kraft: 167 [N]

Das Modell LESYH16 □EA kann vorübergehend als mögliches Modell gewählt werden.

Der Sollwert für die Schubkraft beträgt 64 [%].

Zulässige Einschaltdauer Schrittmotor (Servo 24 VDC)

Einstellwert Schubkraft (%)	Einschaltdauer (%)	Kontinuierliche Schubzeit [min]
35	_	_
max. 50	max. 30	max. 5
max. 70	max. 20	max. 3

Schubbetrieb

Α

Schritt 3 Überprüfen Sie die Einschaltdauer.

Bestätigen Sie die zulässige Einschaltdauer basierend auf dem Schubkraft-Sollwert unter Bezugnahme auf die Tabelle "Zulässige Einschaltdauer". Auswahlbeispiel auf der Grundlage der zulässigen Einschaltdauer)

Schubkraft-Sollwert: 64 %

Die zulässige Einschaltdauer kann 20 % betragen. Berechnen Sie die Einschaltdauer für die Betriebsbedingungen und bestätigen Sie, dass die zulässige Einschaltdauer nicht überschritten wird.

Auswahlbeispiel) • Schubzeit + Betrieb (A): 1,5 s

 Gesamtzykluszeit (B): 10 s Die Einschaltdauer beträgt 1,5/10 x 100 = 15 (%) und liegt somit innerhalb des zulässigen Bereiches.

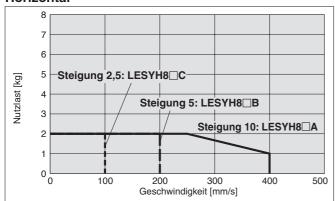
В

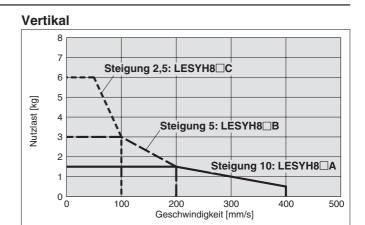
LESYH16/Kippmoment 2000 1500 1000 8 500 200 012 4 6 8 10 12 Nutzlast m [kg]

<Zulässiges dynamisches Moment>

Schritt 4 Überprüfen Sie das zulässige Moment.

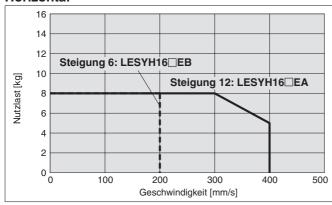
- <Zulässiges statisches Moment> (Seite 4)
- <Zulässiges dynamisches Moment> (Seiten 6, 7)

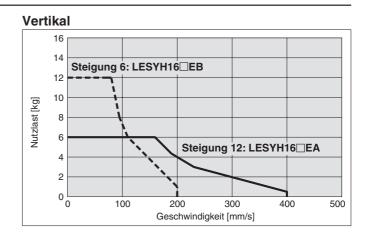

Stellen Sie sicher, dass das auf den Antrieb wirkende Moment innerhalb des zulässigen Bereichs sowohl für die statischen als auch für die dynamischen Bedingungen liegt.


Basierend auf dem obigen Berechnungsergebnis sollte das Modell LESYH16□EA-100 gewählt werden.

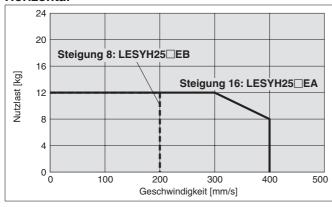
Geschwindigkeits-Nutzlast-Diagramm (Führung)

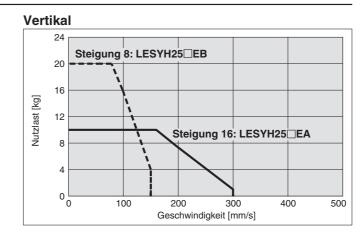
LESYH8□E


Horizontal



LESYH16□E


Horizontal

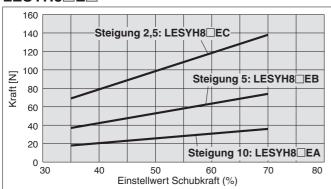


LESYH25□E

Horizontal

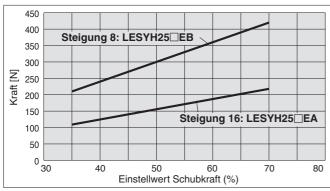
Zulässige statische Momente

Modell	LES	YH8	LES	YH16		LESYH25	5
Hub [mm]	50	75	50	100	50	100	150
Längsbelastung [Nm]	1	1	26	43	77	112	155
Querbelastung [Nm]	11		20	43	''	112	155
Seitenbelastung [Nm]	1	2	4	8	146	177	152

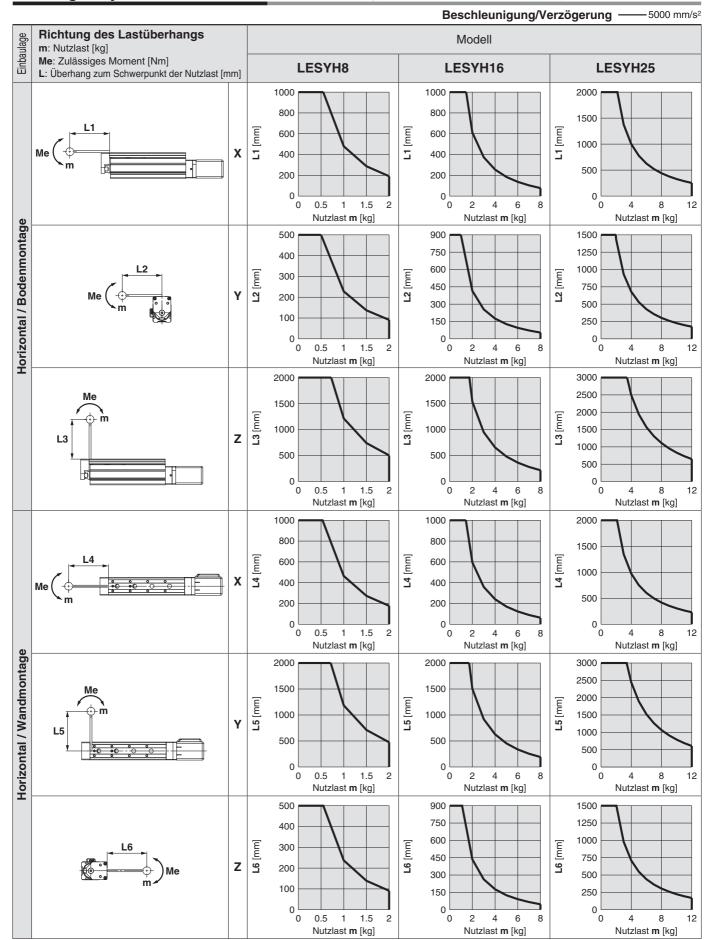



Schrittmotor (24 VDC) mit batterielosem Absolut-Encoder

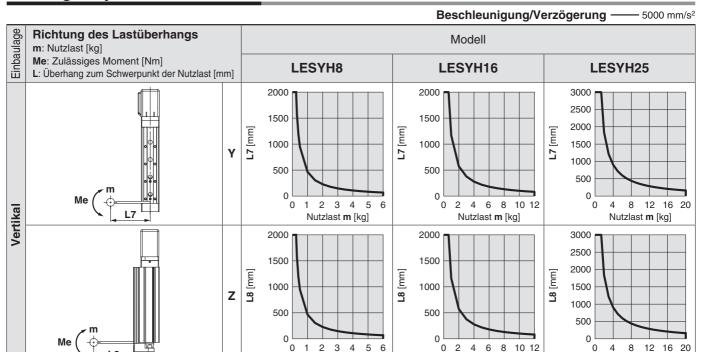
Kraft-Umrechnungsdiagramm


LESYH8□E□

LESYH16□E□



LESYH25□E□


Zulässiges dynamisches Moment

Diese Diagramme zeigen den zulässigen Überhang, wenn der Lastschwerpunkt des Werkstücks einen Überhang in eine Richtung aufweist. Beachten Sie bei der Auswahl des Überhangs die "Berechnung des Führungslastfaktors" oder verwenden Sie zur Bestätigung die Software zur Typenauswahl des elektrischen Antriebs, https://www.smc.eu

Zulässiges dynamisches Moment

Diese Diagramme zeigen den zulässigen Überhang, wenn der Lastschwerpunkt des Werkstücks einen Überhang in eine Richtung aufweist. Beachten Sie bei der Auswahl des Überhangs die "Berechnung des Führungslastfaktors" oder verwenden Sie zur Bestätigung die Software zur Typenauswahl des elektrischen Antriebs, https://www.smc.eu

Berechnung des Belastungsgrads der Führung

1. Bestimmen Sie die Betriebsbedingungen.

Modell: LESYH

Größe: 16

Einbaulage: Horizontal/Boden/Wand/Vertikal

Beschleunigung [mm/s²]: a

Nutzlast [kg]: **m**

Nutzlast-Mitte [mm]: Xc/Yc/Zc

Nutzlast m [kg]

- 2. Wählen Sie das Ziel-Diagramm unter Berücksichtigung des Modells, der Größe und Einbaulage aus.
- 3. Ermitteln Sie anhand der Beschleunigung und der Nutzlast den Überhang [mm]: Lx/Ly/Lz aus dem Diagramm.
- 4. Berechnen Sie den Lastfaktor für jede Richtung.

 $\alpha x = Xc/Lx$, $\alpha y = Yc/Ly$, $\alpha z = Zc/Lz$

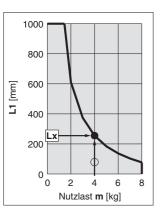
5. Bestätigen Sie, dass der Gesamtwert von αx , αy und αz max. 1 beträgt. $\alpha x + \alpha y + \alpha z \le 1$

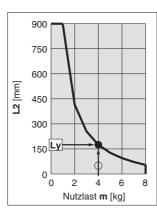
Wenn 1 überschritten wird, sollte eine Verringerung der Beschleunigung und der Nutzlast in Betracht gezogen werden oder die Mittelposition der Nutzlast und die Serie geändert werden.

Nutzlast m [kg]

Beispiel

1. Betriebsbedingungen


Modell: LESYH Größe: 16

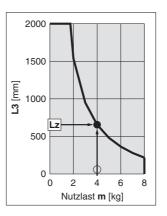

Einbaurichtung: horizontal Beschleunigung [mm/s²]: 5000

Nutzlast [kg]: 4,0

Schwerpunkt der Nutzlast [mm]: Xc = 80, Yc = 50, Zc = 60

2. Wählen Sie drei Diagramme aus dem oberen Teil der zweiten Reihe auf Seite 6 aus.

Nutzlast m [kg]


4. Der Lastfaktor für die einzelnen Richtungen wird wie folgt ermittelt.

 $\alpha x = 80/250 = 0.32$

 α **y** = 50/160 = 0,32

 $\alpha z = 60/700 = 0.09$

5. $\alpha \mathbf{x} + \alpha \mathbf{y} + \alpha \mathbf{z} = \mathbf{0.73} \le \mathbf{1}$

Elektrischer Kompaktschlitten, hochsteife Ausführung

Serie LESYH

Modellauswahl

Auswahlverfahren

Positionieranwendung

Überprüfen Sie die Nutzlast-Geschwindigkeit.

Überprüfen Sie die Zykluszeit.

Überprüfen Sie das zulässige Moment.

Auswahlbeispiel

Schritt 1 Überprüfen Sie das Verhältnis Nutzlast-Geschwindigkeit. < Geschwindigkeits-/Nutzlast-Diagramm> (Seite 10) Wählen Sie das Modell entsprechend dem Werkstückgewicht und Geschwindigkeit unter Berücksichtigung des Geschwindigkeits-/Nutzlast-Diagramms.

> Auswahlbeispiel) Das Modell LESYH 1 6 B- 5 0 kann vorübergehend als mögliches Modell anhand des Diagramms auf der rechten Seite gewählt werden. Der externe Bremswiderstand kann erforderlich sein. Siehe Seite 1 0 für die "Erforderlichen Bedingungen für den externen Bremswiderstand".

Schritt 2 Überprüfen Sie die Zykluszeit.

Berechnen Sie die Zykluszeit mit der folgenden Berechnungsmethode.

Zykluszeit:

T wird aus folgender Gleichung berechnet.

$$T = T1 + T2 + T3 + T4 [s]$$

• T1: Beschleunigungszeit und T3: Verzögerungszeit können durch die folgende Gleichung berechnet werden.

• T2: Die Zeit mit konstanter Geschwindigkeit kann anhand der folgenden Gleichung berechnet werden.

$$T2 = \frac{L - 0.5 \cdot V \cdot (T1 + T3)}{V} [s]$$

• T4: Die Einschwingzeit ist abhängig von Bedingungen wie Motortyp, Last und der Positionierung. Berechnen Sie daher die Einstellzeit unter Berücksichtigung des folgenden Wertes.

$$T4 = 0.15 [s]$$

Berechnungsbeispiel)

T1 bis T4 können wie folgt ermittelt werden.

$$T1 = V/a1 = 200/3000 = 0.07 [s],$$

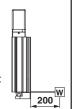
$$T3 = V/a2 = 200/3000 = 0.07 [s]$$

$$2 = \frac{L - 0.5 \cdot V \cdot (T1 + T3)}{V}$$

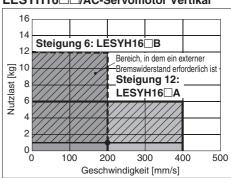
$$= \frac{50 - 0.5 \cdot 200 \cdot (0.07 + 0.07)}{200}$$

$$= 0.18 [s]$$

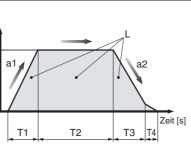
$$T4 = 0.15 [s]$$


Die Zykluszeit kann wie folgt berechnet werden.

$$T = T1 + T2 + T3 + T4$$
$$= 0.07 + 0.18 + 0.07 + 0.15$$

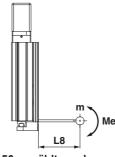

= 0.47 [s]

Betriebsbedingungen

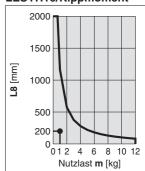

- Werkstückgewicht: 1 [kg] Werkstückmontage:
- Geschwindigkeit: 200 [mm/s]
- Einbaulage: Vertikal
- Hub: 50 [mm]
- Beschleunigung/Verlangsamung: 3000 [mm/s²]
- Zykluszeit: 0,5 s

LESYH16□□/AC-Servomotor Vertikal

<Geschwindigkeits-Nutzlast-Diagramm>


- L: Hub [mm] -(Betriebsbedingung) V: Geschwindigkeit [mm/s] ···· (Betriebsbedingung)
- a1: Beschleunigung [mm/s²] ··· (Betriebsbedingung) a2: Verzögerung [mm/s²] (Betriebsbedingung)
- T1: Beschleunigungszeit [s] ····· Zeit bis zum Erreichen der eingestellten Geschwindiakeit
- T2: Zeit der konstanten Geschwindiokeit [s] ... Zeit, während der Antrieb mit konstanter Geschwindigkeit arbeitet T3: Verzögerungszeit [s] -Zeit vom Beginn des Betriebs mit
- konstanter Geschwindigkeit bis zum Stopp T4: Ausregelzeit [s] Zeit bis zum Abschluss der Positionierung

Geschwindigkeit: V [mm/s]


Überprüfen Sie das zulässige Moment.

- <Zulässiges statisches Moment> (Seite 4)
- <Zulässiges dynamisches Moment> (Seiten 6, 7)

Stellen Sie sicher, dass das auf den Antrieb wirkende Moment innerhalb des zulässigen Bereichs sowohl für die statischen als auch für die dynamischen Bedingungen liegt.

LESYH16/Kippmoment

<Zulässiges dynamisches Moment>

Basierend auf dem obigen Berechnungsergebnis sollte das Modell LESYH16□B-50 gewählt werden.

Auswahlverfahren

Schubanwendung

Auswahlbeispiel Betriebsbedingungen

- Vorschubkraft: 210 N
- Werkstückgewicht: 1 kg
- Geschwindigkeit: 100 mm/s
- Hub: 100 mm
- Einbaulage: Vertikal, aufwärts
- Schubzeit + Betrieb (A): 5 s
- Volle Zykluszeit (B): 10 s

Schritt 1 Überprüfen Sie die benötigte Kraft.

Berechnen Sie die ungefähre erforderliche Kraft für den Schubbetrieb. Auswahlbeispiel) • Vorschubkraft: 210 N

Werkstückgewicht: 1 kg

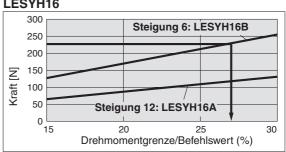
Die ungefähre benötigte Kraft beträgt 210 N + 10 N = 220 N. Wählen Sie ein Modell auf der Grundlage der ungefähren benötigten Kraft unter Berücksichtigung der Spezifikationen (Seite 33, 34).

Auswahlbeispiel auf der Grundlage der Spezifikationen)

- Ungefähre benötigte Kraft: 220 N
- Geschwindigkeit: 100 mm/s

Das Modell **LESYH16**□**B** kann vorübergehend als mögliches Modell gewählt werden.

Berechnen Sie anschließend die erforderliche Kraft für den Schubbetrieb. Wenn eine vertikal aufrechte Einbaulage verwendet wird, muss das Schlittengewicht des Antriebs beachtet werden. Auswahlbeispiel auf der Grundlage des Schlittengewichts)


• LESYH16□B Schlittengewicht: 0,7 [kg] Die erforderliche Kraft beträgt 220 + 7 = 227 [N].

Schlittengewicht

Schillengewicht			[Kg]
Modell	Hub [mm]		
	50	100	150
LESYH16	0,4	0,7	_
LESYH25	0,9	1,3	1,7

Wenn eine vertikal aufrechte Einbaulage verwendet wird, muss das Schlittengewicht des Antriebs beachtet werden.

LESYH16

<Diagramm der Kraftumwandlung>

Schritt 2 Überprüfen Sie die Schubkraft. <Diagramm der Kraftumwandlung>

Wählen Sie ein Modell auf der Grundlage der erforderlichen Kraft aus und beachten Sie dabei das Kraftumwandlungsdiagramm, um den Drehmomentgrenzwert/Befehlswert zu bestimmen.

Auswahlbeispiel) Anhand des Diagramms auf der rechten Seite,


Benötigte Kraft: 227 [N]

Das Modell LESYH 1 6 B kann vorübergehend als mögliches Modell gewählt werden.

Der Drehmomentgrenz-/Befehlswert beträgt 27 (%).

Zulässige Einschaltdauer LESYH16

Drehmomentgrenz-/Befehlswert (%)	Einschaltdauer (%)	Kontinuierliche Schubzeit [min]
Max. 25	100	_
30	60	1.5

Schritt 3 Überprüfen Sie die Einschaltdauer.

Bestätigen Sie die zulässige Einschaltdauer basierend auf dem Drehmomentgrenz-/ Befehlswert unter Berücksichtigung der zulässigen Einschaltdauer.

Auswahlbeispiel auf der Grundlage der zulässigen Einschaltdauer)

• Drehmomentgrenz-/Befehlswert: 27 (%)

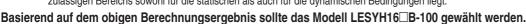
Die zulässige Einschaltdauer kann 60 % betragen. Berechnen Sie die Einschaltdauer für die Betriebsbedingungen und bestätigen Sie, dass die zulässige Einschaltdauer nicht überschritten wird. Auswahlbeispiel) • Schubzeit + Betrieb (A): 5 s

• Gesamtzykluszeit (B): 10 s

Die Einschaltdauer beträgt 5/10 x 100 = 50 [%] und liegt somit innerhalb des zulässigen Bereiches.

Schritt 4 Überprüfen Sie das zulässige Moment.

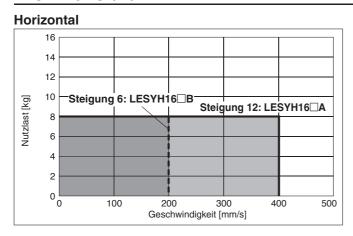
<Zulässiges statisches Moment> (Seite 4)

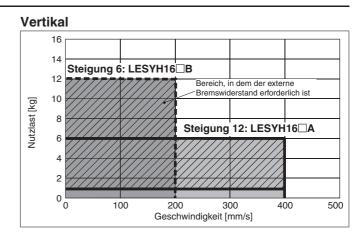

<Zulässiges dynamisches Moment> (Seiten 6, 7)

Stellen Sie sicher, dass das auf den Antrieb wirkende Moment innerhalb des zulässigen Bereichs sowohl für die statischen als auch für die dynamischen Bedingungen liegt.

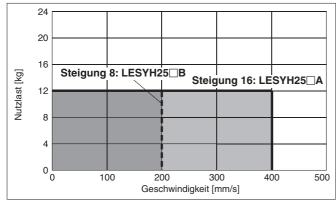
L8

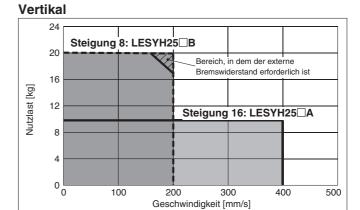
LESYH16/Kippmoment 2000 1500 1000 8 500 200 012 4 6 8 10 12 Nutzlast m [kg]


<Zulässiges dynamisches Moment>



Geschwindigkeits-Nutzlast-Diagramm erforderliche Bedingungen für den externen Bremswiderstand

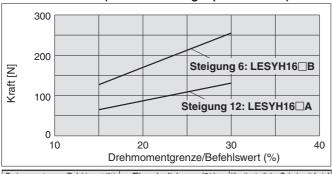

LESYH16□S2/T6



LESYH25□S3/T7

Erforderliche Bedingungen für den externen Bremswiderstand

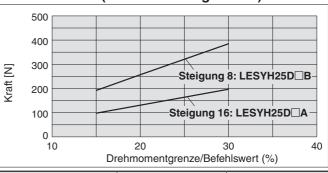
* Der externe Bremswiderstand wird benötigt, wenn das Produkt im schraffiertem Bereich der im Diagramm gezeigten Bremswiderstand-Kennlinie verwendet wird. (Diese müssen separat bestellt werden.)


Externer Bremswiderstand

Externor Bronnerraeretain		
Größe	Modell	
16	LEC-MR-RB-032	
25	LEG-MR-RB-032	

Kraft-Umrechnungsdiagramm (als Orientierungshilfe): LECSA, LECSB, LECSC, LECSS

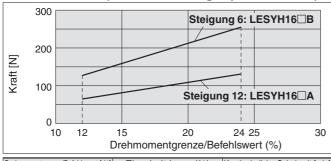
LESYH16□S2 (Motoreinbaulage: parallel/axial)


Drehmomentgrenze/Befehlswert (%)	Einschaltdauer (%)	Kontinuierliche Schubzeit [min]
max. 25	100	_
30	60	1.5

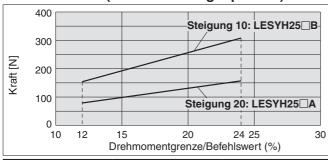
LESYH25□**S3** (Motoreinbaulage: parallel)

Drehmomentgrenze/Befehlswert (%)	Einschaltdauer (%)	Kontinuierliche Schubzeit [min
max. 25	100	_
30	60	1,5

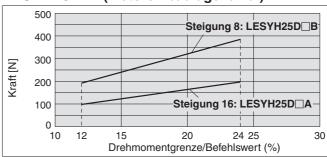
LESYH25DS3 (Motoreinbaulage: axial)



Drehmomentgrenz-/Befehlswert (%)	Einschaltdauer (%)	Kontinuierliche Schubzeit [min]
max. 25	100	_
30	60	1,5


Kraft-Umrechnungsdiagramm (als Orientierungshilfe): LECSS-T

LESYH16□T6 (Motoreinbaulage: parallel/axial)


Drehmomentgrenze/Befehlswert [%]	Einschaltdauer (%)	Kontinuierliche Schubzeit [min]
Max. 20	100	_
24	60	1,5

LESYH25□T7 (Motoreinbaulage: parallel)

Drehmomentgrenze/Befehlswert [%]	Einschaltdauer (%)	Kontinuierliche Schubzeit [min]
max. 20	100	_
24	60	1,5

LESYH25DT7 (Motoreinbaulage: axial)

	Drehmomentgrenze/Befehlswert (%)	Einschaltdauer (%)	Kontinuierliche Schubzeit [min]
	max. 20	100	_
ſ	24	60	1,5

Elektrischer Kompaktschlitten, hochsteife Ausführung

Serie LESYH

Modellauswahl

Auswahlverfahren

Positionieranwendung

Überprüfen Sie die Nutzlast-Geschwindigkeit.

Überprüfen Sie die Zykluszeit.

Überprüfen Sie das zulässige Moment.

Auswahlbeispiel

Schritt 1 Überprüfen Sie das Verhältnis Nutzlast-Geschwindigkeit. < Geschwindigkeits-/Nutzlast-Diagramm> (Seite 15) Wählen Sie das Modell entsprechend dem Werkstückgewicht und Geschwindigkeit unter Berücksichtigung des Geschwindigkeits-/Nutzlast-Diagramms.

> Auswahlbeispiel) Das Modell **LESYH16**□**B-50** kann vorübergehend als mögliches Modell anhand des Diagramms auf der rechten Seite gewählt werden.

Der Regenerativwiderstand kann erforderlich sein. Auf Seite 15 finden Sie die "Erforderlichen Bedingungen für den Regenerativwiderstand (Orientierungshilfe)"

Schritt 2

Überprüfen Sie die Zykluszeit.

Berechnen Sie die Zykluszeit mit der folgenden Berechnungsmethode.

Zvkluszeit:

T wird aus folgender Gleichung berechnet.

• T1: Beschleunigungszeit und T3: Verzögerungszeit können durch die folgende Gleichung berechnet werden.

• T2: Die Zeit mit konstanter Geschwindigkeit kann anhand der folgenden Gleichung berechnet werden.

$$T2 = \frac{L - 0.5 \cdot V \cdot (T1 + T3)}{V} [s]$$

• T4: Die Einschwingzeit ist abhängig von Bedingungen wie Motortyp, Last und der Positionierung. Berechnen Sie daher die Einstellzeit unter Berücksichtigung des folgenden Wertes.

$$T4 = 0.15 [s]$$

Berechnungsbeispiel)

T1 bis T4 können wie folgt ermittelt werden.

$$T1 = V/a1 = 200/3000 = 0.07 [s],$$

$$T3 = V/a2 = 200/3000 = 0.07 [s]$$

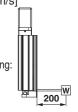
$$T2 = \frac{L - 0.5 \cdot V \cdot (T1 + T3)}{V}$$

$$=\frac{50-0.5\cdot 200\cdot (0.07+0.07)}{200}$$

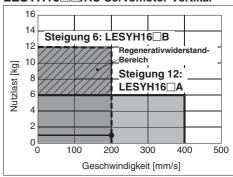
$$= 0.18 [s]$$

$$T4 = 0.15 [s]$$

Die Zykluszeit kann wie folgt berechnet werden.


$$T = T1 + T2 + T3 + T4$$

$$= 0.07 + 0.18 + 0.07 + 0.15$$


$$= 0.47 [s]$$

Betriebsbedingungen

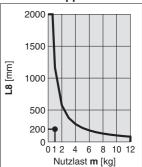
- Werkstückgewicht: 1 [kg] Werkstückmontage:
- Geschwindigkeit: 200 [mm/s]
- Einbaulage: Vertikal
- Hub: 50 [mm]
- Beschleunigung/Verlangsamung:
- 3000 [mm/s²]
- Zykluszeit: 0,5 s

LESYH16□□/AC-Servomotor Vertikal

<Geschwindigkeits-Nutzlast-Diagramm>

- L: Hub [mm] (Betriebsbedingung) V: Geschwindigkeit [mm/s] ··· (Betriebsbedingung)
- a1: Beschleunigung [mm/s²] ·· (Betriebsbedingung)
- a2: Verzögerung [mm/s²] ······· (Betriebsbedingung)
- T1: Beschleunigungszeit [s] --- Zeit bis zum Erreichen der eingestellten Geschwindigkeit
- T2: Zeit der konstanten Geschwindigkeit [s] ... Zeit, während der Antrieb mit konstanter Geschwindigkeit arbeitet Zeit [s] T3: Verzögerungszeit [s] ···· Zeit vom Beginn des Betriebs mit
 - konstanter Geschwindigkeit bis zum Stopp T4: Ausregelzeit [s] Zeit bis zum Abschluss der Positionierung

Geschwindiakeit: V [mm/s] T1 T2 T3


Schritt 3 Überprüfen Sie das zulässige Moment.

dynamischen Bedingungen liegt.

<Zulässiges statisches Moment> (Seite 4) <Zulässiges dynamisches Moment> (Seiten 6, 7)

Stellen Sie sicher, dass das auf den Antrieb wirkende Moment innerhalb des zulässigen Bereichs sowohl für die statischen als auch für die

LESYH16/Kippmoment

<Zulässiges dynamisches Moment>

Auswahlverfahren

Schubanwendungg

Überprüfen Sie die Schritt 1 benötigte Kraft.

Überprüfen Sie die Schritt 2 Schubkraft.

Einbaulage: Vertikal, aufwärts

Auswahlbeispiel

Betriebsbedingungen

- Vorschubkraft: 210 N
- Werkstückgewicht: 1 kg
- Geschwindigkeit: 100 mm/s
- Schubzeit + Betrieb (A): 5 s

Schritt 1 Überprüfen Sie die benötigte Kraft.

Berechnen Sie die ungefähre erforderliche Kraft für den Schubbetrieb.

• Hub: 100 mm

Auswahlbeispiel) • Vorschubkraft: 210 N

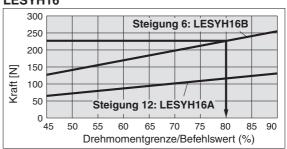
Werkstückgewicht: 1 kg

Die ungefähre benötigte Kraft beträgt 210 N + 10 N = 220 N. Wählen Sie ein Modell auf der Grundlage der ungefähren benötigten Kraft unter Berücksichtigung der Spezifikationen (Seite 39). Auswahlbeispiel auf der Grundlage der Spezifikationen)

- Ungefähre benötigte Kraft: 220 N
- Geschwindigkeit: 100 mm/s

Das Modell **LESYH16**□**B** kann vorübergehend als mögliches Modell gewählt werden.

Berechnen Sie anschließend die erforderliche Kraft für den Schubbetrieb. Wenn eine vertikal aufrechte Einbaulage verwendet wird, muss das Schlittengewicht des Antriebs beachtet werden. Auswahlbeispiel auf der Grundlage des Schlittengewichts)


> LESYH16□B Schlittengewicht: 0,7 [kg] Die erforderliche Kraft beträgt 220 + 7 = 227 [N].

Schlittengewicht

Schlittengewicht			[kg]
Modell	Hub [mm]		
Modeli	50	100	150
LESYH16	0,4	0,7	_
LESYH25	0,9	1,3	1,7

Wenn eine vertikal aufrechte Einbaulage verwendet wird, muss das Schlittengewicht des Antriebs beachtet werden.

LESYH16

<Diagramm der Kraftumwandlung>

Schritt 2 Überprüfen Sie die Schubkraft. <Diagramm der Kraftumwandlung>

Wählen Sie ein Modell auf der Grundlage der erforderlichen Kraft aus und beachten Sie dabei das Kraftumwandlungsdiagramm, um den Drehmomentgrenzwert/Befehlswert zu bestimmen.

Auswahlbeispiel) Anhand des Diagramms auf der rechten Seite,

Benötigte Kraft: 227 [N]

Das Modell **LESYH16**□**B** kann vorübergehend als mögliches Modell gewählt werden.

Der Drehmomentgrenz-/Befehlswert beträgt 80 [%].

Zulässige Einschaltdauer LESYH16/AC Servomotor

Einstellwert Schubkraft (%)	Einschaltdauer (%)	Kontinuierliche Schubzeit [min]
Max. 75	100	_
90	60	1,5

- [Schubkraft-Sollwert] ist eine Dateneingabe der Endstufe.
- [Kontinuierliche Schubzeit] ist die Zeit, während der Antrieb kontinuierlich schieben kann.

Schubbetrieb Position Zeit Α В

Schritt 3 Überprüfen Sie die Einschaltdauer.

Bestätigen Sie die zulässige Einschaltdauer basierend auf dem Drehmomentgrenz-/ Befehlswert unter Berücksichtigung der zulässigen Einschaltdauer.

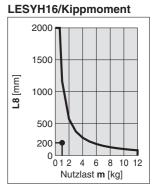
Auswahlbeispiel auf der Grundlage der zulässigen Einschaltdauer)

• Drehmomentgrenz-/Befehlswert: 81 (%)

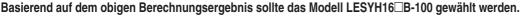
Die zulässige Einschaltdauer kann 60 % betragen.

Berechnen Sie die Einschaltdauer für die Betriebsbedingungen und bestätigen Sie, dass die zulässige Einschaltdauer nicht überschritten wird.

Auswahlbeispiel) • Schubzeit + Betrieb (A): 5 s

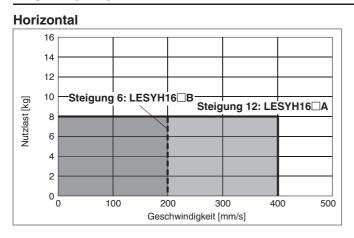

• Gesamtzykluszeit (B): 10 s

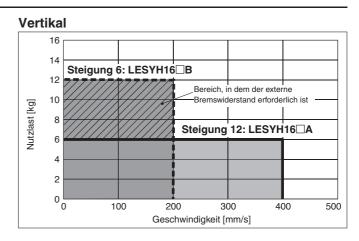
Die Einschaltdauer beträgt 5/10 x 100 = 50 (%) und liegt somit innerhalb des zulässigen Bereiches.


Schritt 4 Überprüfen Sie das zulässige Moment.

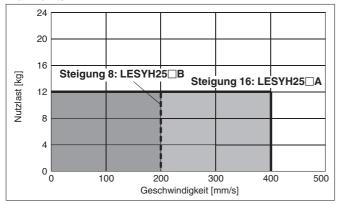
- <Zulässiges statisches Moment> (Seite 4)
- <Zulässiges dynamisches Moment> (Seiten 6, 7)

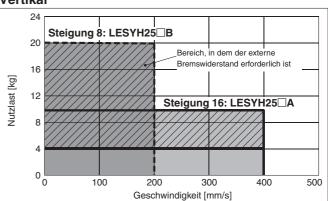
Stellen Sie sicher, dass das auf den Antrieb wirkende Moment innerhalb des zulässigen Bereichs sowohl für die statischen als auch für die dynamischen Bedingungen liegt.


<Zulässiges dynamisches Moment>



Geschwindigkeit-Nutzlast-Diagramm erforderliche Bedingungen für den Bremswiderstand (Orientierungshilfe)


LESYH16□V6



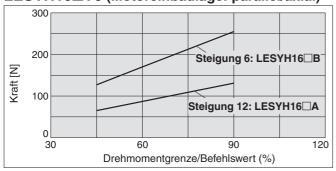
LESYH25□V7

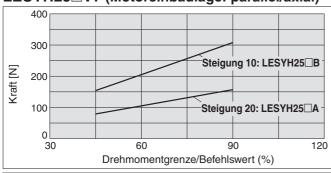
Horizontal

Bremswiderstandsbereich

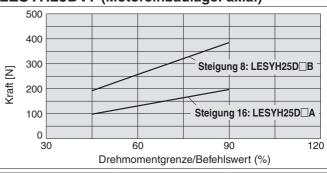
- * Wenn Sie den Antrieb im Bereich des Bremswiderstands verwenden, laden Sie das "AC-Servoantriebskapazitäts-Auswahlprogramm/SigmaJunmaSize+" von der SMC-Website herunter. Berechnen Sie dann die erforderliche Kapazität des Bremswideratnds, um einen geeigneten auszuwählen.
- * Der Bremswiderstand ist kundenseitig bereitzustellen.

Verwendbare Motoren/Endstufen


Modell	Verwendbares Modell		
Modeli	Motor	Servopack (SMC-Endstufe)	
LESYH25□	5 □ SGMJV-01A3A	SGDV-R90A11□(LECYM2-V5) SGDV-R90A21□(LECYU2-V5)	
LESYH32□	SGMJV-02A3A	SGDV-1R6A11□(LECYM2-V7) SGDV-1R6A21□(LECYU2-V7)	

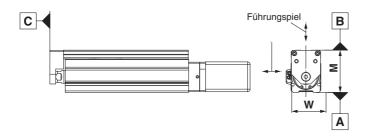

Kraft-Umrechnungsdiagramm (Orientierungshilfe)

LESYH16□V6 (Motoreinbaulage: parallel/axial)


Drehmomentgrenze/Befehlswert (%)	Einschaltdauer (%)	Kontinuierliche Schubzeit [min]	
max. 75	100	_	
90	60	1,5	

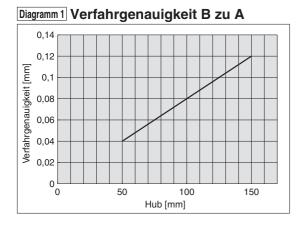
LESYH25□V7 (Motoreinbaulage: parallel/axial)

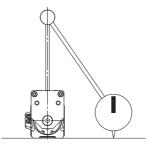
Drehmomentgrenze/Befehlswert (%)	Einschaltdauer (%)	Kontinuierliche Schubzeit [min]
max. 75	100	_
90	60	1,5


LESYH25DV7 (Motoreinbaulage: axial)

Drehmomentgrenze/Befehlswert (%)	Einschaltdauer (%)	Kontinuierliche Schubzeit [min]
max. 75	100	_
90	60	1,5

Schlittengenauigkeit


* Bei diesen Werten handelt es sich um Anfangs-Richtwerte.



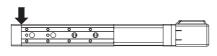
Modell	LESYH8	LESYH16	LESYH25
Parallelität B zu A [mm]	Si	ehe Tabelle	1.
lineare Verfahrgenauigkeit B zu A	Sie	he Diagramr	m 1.
Winkelabweichung C zu A [mm]	0,05	0,05	0,05
Maßtoleranz M [mm]		±0,3	
Maßtoleranz W [mm]		±0,2	
Radiale Spiel [μm]	-4 bis 0	-10 bis 0	-14 bis 0

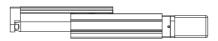
Tabelle 1 Parallelität B zu A

Modell	Hub [mm]				
Wodeli	50	75	100	150	
LESYH8	0,055	0,065	_	_	
LESYH16	0,05	_	0,08	_	
LESYH25	0,06	_	0,08	0,125	

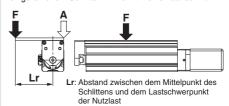
Verfahrgenauigkeit

Die Höhe der Ablenkung auf einer Messuhr, wenn der Schlitten einen vollen Hub verfährt und das Gehäuse auf einer Bezugsgrundfläche fixiert ist.

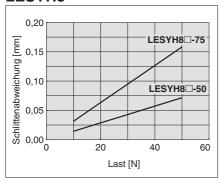

Schlittenabweichung (Richtwert)

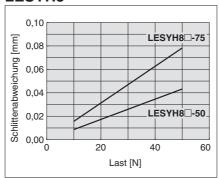

* Bei diesen Werten handelt es sich um Anfangs-Richtwerte.

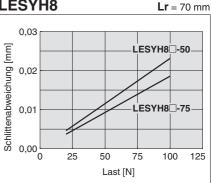
Schlittenabweichung durch Längsbelastung Schlittenabweichung, wenn bei ausgefahrenem Schlitten eine Last an der mit dem Pfeil markierten Stelle auftritt.

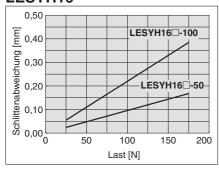


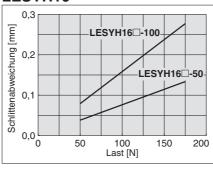
Schlittenabweichung durch Querbelastung Schlittenabweichung, wenn bei ausgefahrenem Schlitten eine Last an der mit dem Pfeil markierten Stelle auftritt.

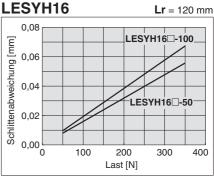



Schlittenabweichung durch Seitenbelastung Schlittenabweichungim Bereich A, wenn bei eingefahrenem Schlitten im Punkt F eine Last auftritt.

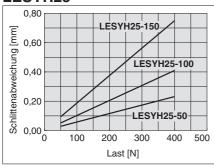

LESYH8


LESYH8

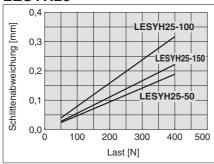

LESYH8

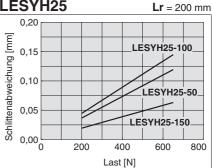


LESYH16



LESYH16




LESYH25

LESYH25

LESYH25

Elektrischer Kompaktschlitten, hochsteife Ausführung Serie LESYH

Modellauswahl 1

Auswahlverfahren

Positionieranwendung

Überprüfen Sie die Nutzlast-Geschwindigkeit.

Überprüfen Sie das zulässige Moment.

Auswahlbeispiel

Die unten dargestellte Typenauswahlmethode bezieht sich auf den Standardmotor von SMC. Für die Verwendung in Kombination mit einem Motor eines anderen Herstellers prüfen Sie bitte die verfügbaren Produktinformationen des zu verwendenden Motors.

Überprüfen Sie das Verhältnis Nutzlast-Geschwindigkeit. < Geschwindigkeits-/Nutzlast-Diagramm> (Seite 21) Wählen Sie das Modell entsprechend dem Werkstückgewicht und Geschwindigkeit unter Berücksichtigung des Geschwindigkeits-/Nutzlast-Diagramms.

Auswahlbeispiel) Das Modell **LESYH16**□**B-50** kann vorübergehend als mögliches Modell anhand des Diagramms auf der rechten Seite gewählt werden.

Siehe die Auswahlmethode der Motorhersteller für den Bremswiderstand. Schritt 2

Überprüfen Sie die Zykluszeit.

Berechnen Sie die Zykluszeit mit der folgenden Berechnungsmethode.

Zykluszeit:

T wird aus folgender Gleichung berechnet.

$$T = T1 + T2 + T3 + T4 [s]$$

• T1: Beschleunigungszeit und T3: Verzögerungszeit können durch die folgende Gleichung berechnet werden.

• T2: Die Zeit mit konstanter Geschwindigkeit kann anhand der folgenden Gleichung berechnet werden.

$$T2 = \frac{L - 0.5 \cdot V \cdot (T1 + T3)}{V} [s]$$

• T4: Die Einschwingzeit ist abhängig von Bedingungen wie Motortyp, Last und der Positionierung. Berechnen Sie daher die Einstellzeit unter Berücksichtigung des folgenden Wertes.

$$T4 = 0.15 [s]$$

Berechnungsbeispiel)

T1 bis T4 können wie folgt ermittelt werden.

$$T1 = V/a1 = 200/3000 = 0.07 [s],$$

$$T3 = V/a2 = 200/3000 = 0.07 [s]$$

$$T2 = \frac{L - 0.5 \cdot V \cdot (T1 + T3)}{V}$$

$$= \frac{50 - 0.5 \cdot 200 \cdot (0.07 + 0.07)}{200}$$

$$T4 = 0.15 [s]$$

Die Zykluszeit kann wie folgt berechnet werden.

T2

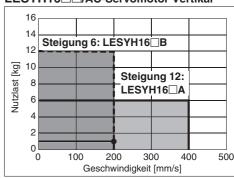
ТЗ

$$T = T1 + T2 + T3 + T4$$

= 0,07 + 0,18 + 0,07 + 0,15

$$= 0,47 [s]$$

T1

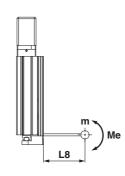

Geschwindigkeit: V [mm/s]

Betriebsbedingungen

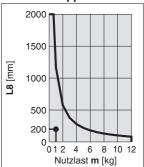
- Werkstückgewicht: 1 [kg] Werkstückmontage:
- Geschwindigkeit: 200 [mm/s]
- Einbaulage: Vertikal
- Hub: 50 [mm]
- Beschleunigung/
- Verlangsamung: 3000 [mm/s²]
- Zykluszeit: 0,5 s

LESYH16□□/AC-Servomotor Vertikal

200


<Geschwindigkeits-Nutzlast-Diagramm>

- L: Hub [mm] -(Betriebsbedingung)
- V: Geschwindigkeit [mm/s] ···· (Betriebsbedingung) a1: Beschleunigung [mm/s²] ··· (Betriebsbedingung)
- a2: Verzögerung [mm/s²] ····· (Betriebsbedingung)
- T1: Beschleunigungszeit [s] -- Zeit bis zum Erreichen der eingestellten Geschwindigkeit
- T2: Zeit der konstanten Geschwindigkeit [s] ... Zeit, während der Antrieb mit konstanter Geschwindigkeit arbeitet
- Zeit [s] T3: Verzögerungszeit [s] ···· Zeit vom Beginn des Betriebs mit konstanter Geschwindigkeit bis zum Stopp
 - T4: Ausregelzeit [s] ··· Zeit bis zum Abschluss der Positionierung


Schritt 3 Überprüfen Sie das zulässige Moment. <Zulässiges statisches Moment> (Seite 21)

<Zulässiges dynamisches Moment> (Seiten 22, 23)

Stellen Sie sicher, dass das auf den Antrieb wirkende Moment innerhalb des zulässigen Bereichs sowohl für die statischen als auch für die dynamischen Bedingungen liegt.

LESYH16/Kippmoment

<Zulässiges dynamisches Moment>

Auswahlverfahren

Schubanwendung

Überprüfen Sie die Schubkraft.

Überprüfen Sie das zulässige Moment.

Auswahlbeispiel

Die unten dargestellte Typenauswahlmethode bezieht sich auf den Standardmotor von SMC. Für die Verwendung in Kombination mit einem Motor eines anderen Herstellers prüfen Sie bitte die verfügbaren Produktinformationen des zu verwendenden Motors.

Betriebsbedingungen

Vorschubkraft: 210 N

• Einbaulage: Vertikal, aufwärts

Werkstückgewicht: 1 kg

• Schubzeit + Betrieb (A): 5 s

• Geschwindigkeit: 100 mm/s

Volle Zykluszeit (B): 10 s

• Hub: 100 mm

Schritt 1 Überprüfen Sie die benötigte Kraft.

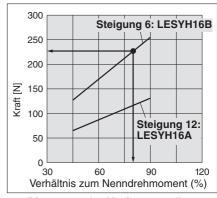
Berechnen Sie die ungefähre erforderliche Kraft für den Schubbetrieb. Auswahlbeispiel) • Vorschubkraft: 210 N

Werkstückgewicht: 1 kg

Die ungefähre benötigte Kraft beträgt 210 N + 10 N = 220 N. Wählen Sie ein Modell auf der Grundlage der ungefähren benötigten Kraft unter Berücksichtigung der Spezifikationen (Seite 43). Auswahlbeispiel auf der Grundlage der Spezifikationen)

- Ungefähre benötigte Kraft: 220 N
- Geschwindigkeit: 100 mm/s

Das Modell **LESYH16**□**B** kann vorübergehend als mögliches Modell gewählt werden.


Berechnen Sie anschließend die erforderliche Kraft für den Schubbetrieb. Wenn eine vertikal aufrechte Einbaulage verwendet wird, muss das Schlittengewicht des Antriebs beachtet werden. Auswahlbeispiel auf der Grundlage des Schlittengewichts)

• LESYH16□B Schlittengewicht: 0,7 [kg] Die erforderliche Kraft beträgt 220 + 7 = 227 [N].

Schlittengewicht

Schlittengewicht			[kg]
Modell	Hub [mm]		
Modell	50	100	150
LESYH16	0,4	0,7	_
LESYH25	0,9	1,3	1,7

Wenn eine vertikal aufrechte Einbaulage verwendet wird, muss das Schlittengewicht des Antriebs beachtet werden.

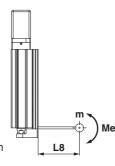
<Diagramm der Kraftumwandlung>

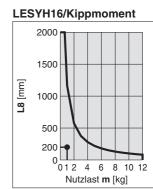
Schritt 2 Überprüfen Sie die Schubkraft. < Diagramm der Kraftumwandlung >

Wählen Sie ein Modell auf der Grundlage des Verhältnisses zum Nenndrehmoment und zur Nennkraft aus, indem Sie das Kraftumwandlungsdiagramm beachten.

Auswahlbeispiel)

Anhand des Diagramms auf der rechten Seite,


- Verhältnis zum Nenndrehmoment: 80 (%)
- Kraft: 227 [N]

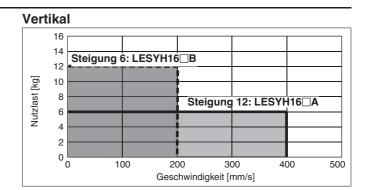

Das Modell LESYH16B kann vorübergehend als mögliches Modell gewählt werden.

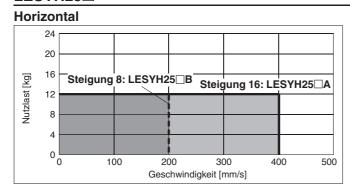
Schritt 3 Überprüfen Sie das zulässige Moment.

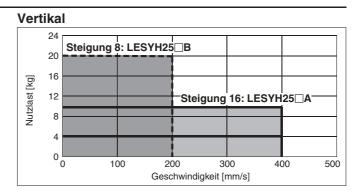
- <Zulässiges statisches Moment> (Seite 21)
- <Zulässiges dynamisches Moment> (Seiten 22, 23)

Stellen Sie sicher, dass das auf den Antrieb wirkende Moment innerhalb des zulässigen Bereichs sowohl für die statischen als auch für die dynamischen Bedingungen liegt.

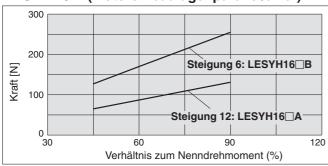

<Zulässiges dynamisches Moment>

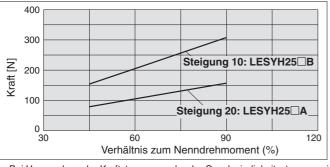

Basierend auf dem obigen Berechnungsergebnis sollte das Modell LESYH16□N□B-100 gewählt werden.


Geschwindigkeits-Nutzlast-Diagramm (Orientierungshilfe)

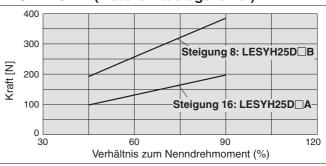

LESYH16□

LESYH25




Diagramm der Kraftumwandlung (Orientierungshilfe)

* Diese Diagramme zeigen ein Beispiel anhand des Standardmotors. Berechnen Sie die Kraft anhand des verwendeten Motors und der Endstufe.

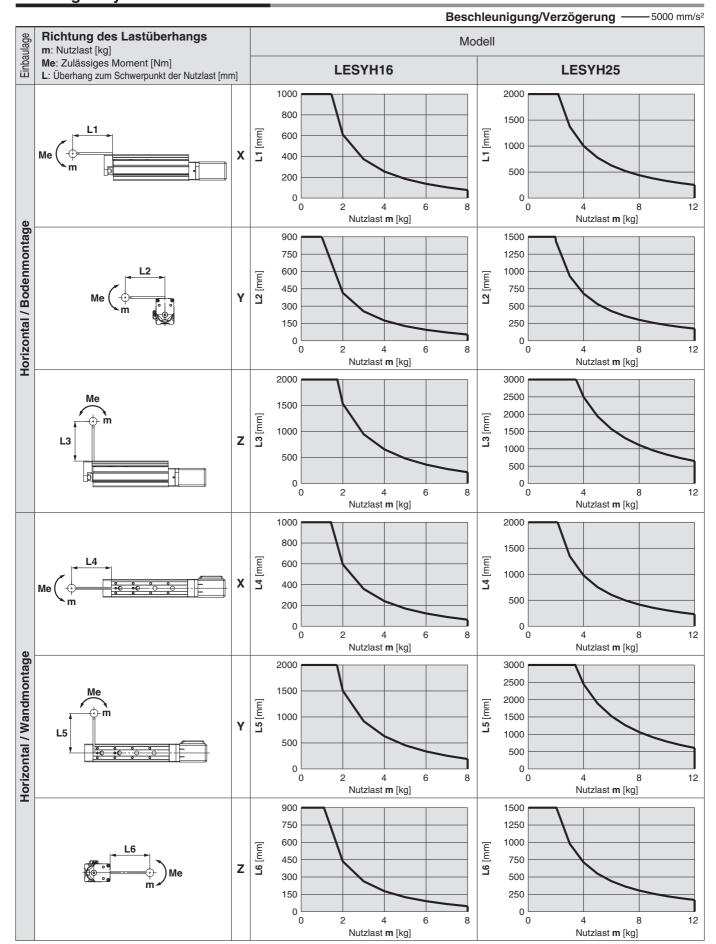

LESYH16□ (Motoreinbaulage: parallel/axial)

LESYH25□ (Motoreinbaulage: parallel)

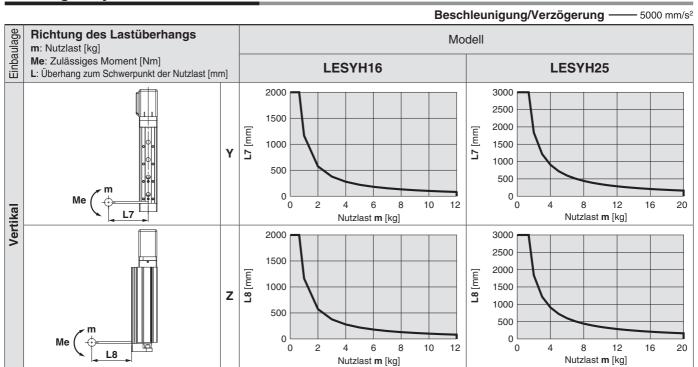
LESYH25D (Motoreinbaulage: axial)

^{*} Bei Verwendung der Kraftsteuerung oder der Geschwindigkeitssteuerung ist der maximale Wert auf höchstens 90 % des Nenndrehmoments einzustellen.

Zulässige statische Momente


Modell	LESYH16		SYH16 LESYH25		5
Hub [mm]	50	100	50	100	150
Längsbelastung [Nm]	26	26 43	77	112	155
Querbelastung [Nm]					
Seitenbelastung [Nm]	48		146	177	152

Zulässiges dynamisches Moment


Diese Diagramme zeigen den zulässigen Überhang (Führungseinheit), wenn der Lastschwerpunkt des Werkstücks einen Überhang in eine Richtung aufweist. Beachten Sie bei der Auswahl des Überhangs die "Berechnung des Führungslastfaktors" oder verwenden Sie zur Bestätigung die Software zur Typenauswahl des elektrischen Antriebs, https://www.smc.eu

Zulässiges dynamisches Moment

Diese Diagramme zeigen den zulässigen Überhang, wenn der Lastschwerpunkt des Werkstücks einen Überhang in eine Richtung aufweist. Beachten Sie bei der Auswahl des Überhangs die "Berechnung des Führungslastfaktors" oder verwenden Sie zur Bestätigung die Software zur Typenauswahl des elektrischen Antriebs, https://www.smc.eu

Berechnung des Belastungsgrads der Führung

1. Bestimmen Sie die Betriebsbedingungen.

Modell: LESYH

Größe: 16

Einbaulage: Horizontal/Boden/Wand/Vertikal

Beschleunigung [mm/s²]: a

Nutzlast [kg]: ${\bf m}$

Nutzlast-Mitte [mm]: Xc/Yc/Zc

- 2. Wählen Sie das Ziel-Diagramm unter Berücksichtigung des Modells, der Größe und Einbaulage aus.
- 3. Ermitteln Sie anhand der Beschleunigung und der Nutzlast den Überhang [mm]: Lx/Ly/Lz aus dem Diagramm.
- 4. Berechnen Sie den Lastfaktor für jede Richtung.

 $\alpha x = Xc/Lx$, $\alpha y = Yc/Ly$, $\alpha z = Zc/Lz$

5. Bestätigen Sie, dass der Gesamtwert von αx , αy und αz max. 1 beträgt. $\alpha x + \alpha y + \alpha z \le 1$

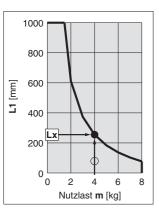
Wenn 1 überschritten wird, sollte eine Verringerung der Beschleunigung und der Nutzlast in Betracht gezogen werden oder die Mittelposition der Nutzlast und die Serie geändert werden.

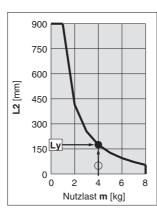
Beispiel

23

1. Betriebsbedingungen

Modell: LESYH


Größe: 16

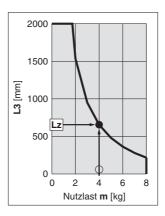

Einbaurichtung: horizontal Beschleunigung [mm/s²]: 5000

Nutzlast [kg]: 4,0

Schwerpunkt der Nutzlast [mm]: Xc = 80, Yc = 50, Zc = 60

2. Wählen Sie drei Diagramme aus dem oberen Teil der ersten Reihe auf Seite 22 aus.

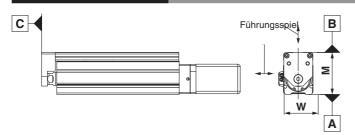
SMC


- 3. Lx = 250 mm, Ly = 160 mm, Lz = 700 mm
- 4. Der Lastfaktor für die einzelnen Richtungen wird wie folgt ermittelt.

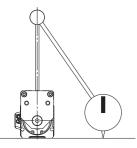
 $\alpha x = 80/250 = 0.32$

 α **y** = 50/160 = 0,32

 $\alpha z = 60/700 = 0.09$

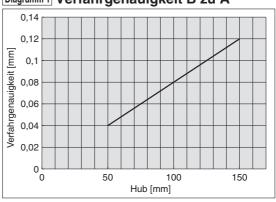

5. $\alpha \mathbf{x} + \alpha \mathbf{y} + \alpha \mathbf{z} = \mathbf{0.73} \le \mathbf{1}$

Schlittengenauigkeit


* Bei diesen Werten handelt es sich um Anfangs-Richtwerte.

Modell	LESYH16	LESYH25	
Parallelität B zu A [mm]	Siehe Tabelle 1.		
lineare Verfahrgenauigkeit B zu A	Siehe Diagramm 1.		
Winkelabweichung C zu A [mm]	0,05		
Maßtoleranz M [mm]	±0,3		
Maßtoleranz W [mm]	±0,2		
Radiale Spiel [μm]	-10 bis 0	-14 bis 0	

Tabelle 1 Parallelität B zu A


Modell	Hub [mm]				
	50	100	150		
LESYH16	0,05	0,08	_		
LESYH25	0,06	0,08	0,125		

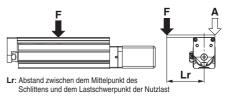
Verfahrgenauigkeit

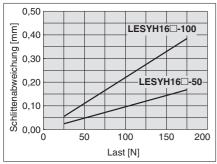
Die Höhe der Ablenkung auf einer Messuhr, wenn der Schlitten einen vollen Hub verfährt und das Gehäuse auf einer Bezugs- Grundfläche fixiert ist.

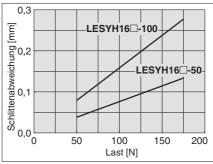

Diagramm 1 Verfahrgenauigkeit B zu A

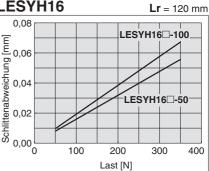
Schlittenabweichung (Richtwert)

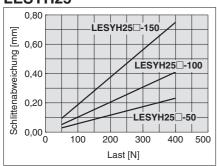
* Bei diesen Werten handelt es sich um Anfangs-Richtwerte.

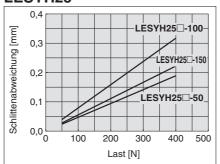

Schlittenabweichung durch Längsbelastung Schlittenabweichung, wenn bei ausgefahrenem Schlitten eine Last an der mit dem Pfeil markierten Stelle auftritt.

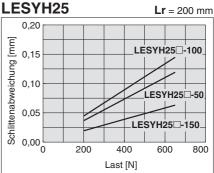

Schlittenabweichung durch Querbelastung Schlittenabweichung, wenn bei ausgefahrenem Schlitten eine Last an der mit dem Pfeil markierten Stelle auftritt.


Schlittenabweichung durch Seitenbelastung Verstellung des Schlittens von Abschnitt A, wenn bei eingefahrenem Schlitten Lasten auf Abschnitt F aufgebracht werden.


LESYH16

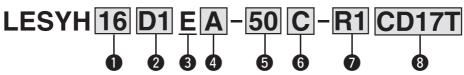



LESYH16



LESYH25

LESYH25


Elektrischer Kompaktschlitten, hochsteife Ausführung

Serie LESYH

Motoreinbaulage: inline

Motoreinbaulage: rechts, parallel

Einzelheiten zu den Controllern finden Sie auf der nächsten Seite.

Baugröße

	•
8	
16	
25	

2 Motoreinbaulage

Symbol	Einbaulage des Motors	Ausrichtung des Motorgehäuses		
D1		linke Seite		
D2	inline	rechte Seite		
D3	II III I E	Oberseite		
D4		Unterseite		
R	rechts, parallel			
L	links, parallel	_		

^{*} Für Größe 8

2 Motoreinbaulage

D	Inline				
L	Rechte Seite parallel				
R	Linke Seite parallel				

^{*} Für die Größen 16 und 25

3 Motorausführung

Symbol	Motorausführung Kompatible Contr					
E	Schrittmotor 24 VDC Batterieloser Absolut-Encoder	JXCE1 JXC91 JXCP1 JXCD1	JXCL1 JXCM1 JXC51 JXC61			

4 Spindelsteigung [mm]

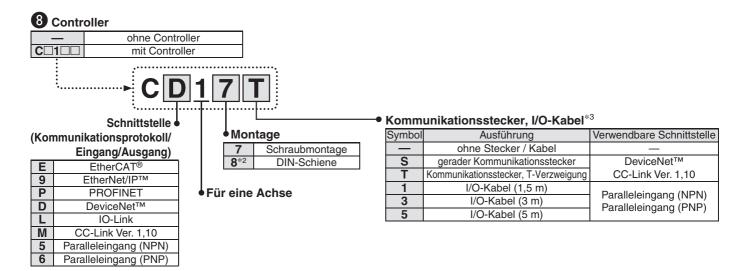
		Baugröße						
	8	16	25					
Α	10	12	16					
В	5	6	8					
С	2,5	_	_					

Hub [mm]

		Baugröße					
	8	16	25				
50	•	•	•				
75	•	_	_				
100	_	•	•				
150	_	_	•				

6 Motoroption

С	ohne Motorbremse
W	mit Motorbremse


Antriebskabellänge

Robotikkabel							
_	ohne Kabel	R8	8* ¹				
R1	1,5	RA	10* ¹				
R3	3	RB	15* ¹				
R5	5	RC	20*1				

Einzelheiten zu den Signalgebern finden Sie im **Web-Katalog**.

Elektrischer Kompaktschlitten, hochsteife Ausführung Serie LESYH

Schrittmotor (24 VDC) mit batterielosem Absolut-Encoder

- *1 Fertigung auf Bestellung
- *2 DIN-Schiene ist nicht inbegriffen. Bitte separat bestellen.

*3 Wählen Sie "—" für alle Optionen außer DeviceNet™, CC-Link oder Paralleleingang. Wählen Sie "—" "S," oder "T" für DeviceNet™ oder CC-Link. Wählen Sie "—," "1," "3," oder "5" für Paralleleingang.

Achtung

[CE-konforme Produkte]

Die Erfüllung der EMV-Richtliniewurde geprüft, indem der elektrische Antrieb der Serie LES mit dem Controller der Serie JXC kombiniert wurde.

Die EMV ist von der Konfiguration der Schalttafel des Kunden und von der Beeinflussung sonstiger elektrischer Geräte und Verdrahtung abhängig. Aus diesem Grund kann die Erfüllung der EMV-Richtlinie nicht für SMC-Bauteile zertifiziert werden, die unter realen Betriebsbedingungen in Kundensystemen integriert sind. Daher muss der Kunde die Erfüllung der EMV-Richtlinie für das Gesamtsystem bestehend aus allen Maschinen und Anlagen überprüfen.

[Vorsichtsmaßnahmen in Bezug auf die unterschiedlichen Controller-Versionen]

Wenn die JXC-Serie in Kombination mit dem batterielosen Absolut-Encoder verwendet werden soll, verwenden Sie einen Controller der Version V3.4 oder S3.4 oder höher.

Siehe Web-Katalog für Details.

[UL-konforme Produkte]

Die Controller der Serie JXC, die in Kombination mit elektrischen Antrieben eingesetzt werden, sind UL-zertifiziert.

Antrieb und Controller werden als Paket verkauft.

Stellen Sie sicher, dass die Kombination aus Controller und Antrieb korrekt ist.

<Prüfen Sie vor der Verwendung folgende Punkte>

*1 Überprüfen Sie die Modellnummer auf dem Typenschild des Antriebs. Diese Nummer muss mit der des Controllers übereinstimmen.

 Siehe Betriebsanleitung für die Verwendung der Produkte. Diese können Sie von unserer Webseite: http://www.smc.eu herunterladen.

	EtherCAT®	EtherNet/IP™	PROFINET	DeviceNet™	IO-Link	CC-Link	Schrittdate- neingabe
Ausführung							
Serie	JXCE1	JXC91	JXCP1	JXCD1	JXCL1	JXCM1	JXC51 JXC61
Merkmale	EtherCAT® Direkteingang	EtherNet/IP™ Direkteingang	PROFINET Direkteingang	DeviceNet™ Direkteingang	IO-Link Direkteingang	CC-Link Direkteingang	Parallel-I/O
kompatibler	Schrittmotor 24 VDC						
Motor		Batterieloser Absolut-Encoder					
Max. Anzahl der Schrittdaten				64 Positionen			
Versorgungsspannung		24 VDC					

Technische Daten

Schrittmotor (24 VDC) mit batterielosem Absolut-Encoder

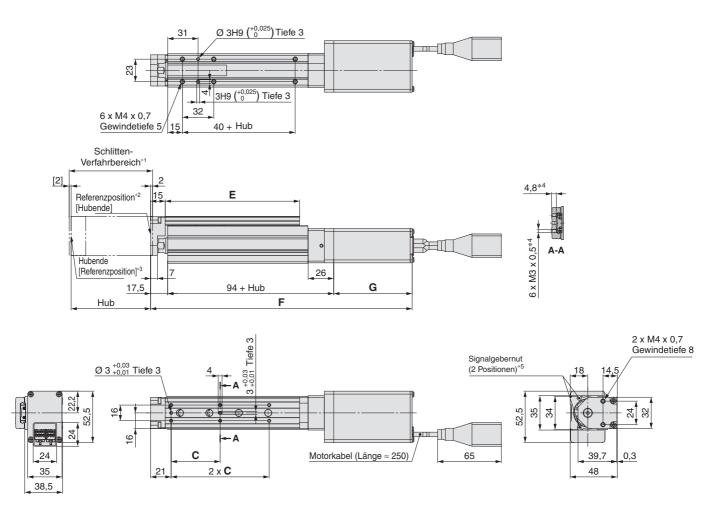
	Modell		LESYH8□EA	LESYH8□EB	LESYH8□EC	LESYH16□EA	LESYH16□EB	LESYH25□EA	LESYH25□EB	
	Hub [mm]			50, 75		50,	50, 100		50, 100, 150	
	max. Nutzlast [kg]*1 *3	horizontal	2		8		12			
		vertikal	1,5	3	6	6	12	10	20	
sq	Schubkraft 35 % bis 70 %		18 bis 36	37 bis 74	69 bis 138	91 bis 182	174 bis 348	109 bis 218	210 bis 420	
Antriebs	max. Geschwindigkeit [mm/s]*1 *3		400	200	100	400	200	400	200	
	Schubgeschwindigkeit [mi	m/s]	20 bis 30	10 bis 30	5 bis 30	20 bis 30	10 bis 30	20 bis 30	10 bis 30	
des	max. Beschleunigung/Verzöge	rung [mm/s²]				5.000				
	Positionierwiederholgenau	igkeit [mm]				±0,01				
Daten	Umkehrspiel [mm]*4					max. 0,1				
	Spindelsteigung [mm]		10	5	2,5	12	6	16	8	
isc	Stoß-/Vibrationsfestigkeit	[m/s ²]*5				50/20				
Technische	Funktionsweise		Kugelumlaufspindel: LESYH□D Kugelumlaufspindel + Riemen: LESYH□(R, L)							
	Führung		Linearführung (Kugelumlauf)							
	Betriebstemperaturbereich	ո [°C]	5 bis 40							
	Luftfeuchtigkeitsbereich [9	%RH]			max. 90	(keine Konder	sation)			
el el	Motorgröße			□28			42		56	
Spezifikationen	Motorausführung				Schritt	motor (Servo/24	VDC)			
ij	Encoder			batter	ieloser Absolutw	wertgeber (4096 Impulse/Umdrehung)				
	Nennspannung [V]					24 VDC ±10 %				
Elektrische	Leistungsaufnahme [W]*6			23		4	0	5	0	
ktris	Standby-Leistungsaufnahme im Betrie	bszustand [W]*7		16		1	5	4	8	
当	Max. momentane Leistungsaufna	ahme [W]*8		43		4	8	10)4	
bremse	Ausführung				spannur	ngsfreie Funktionsweise				
an Motor	Haltekraft [N]		20	39	78	78	157	108	216	
Technische Daten Motorbremse	Leistungsaufnahme [W]*10	*9	2,9			5				
Technis	Nennspannung [V]					24 VDC ±10 %				

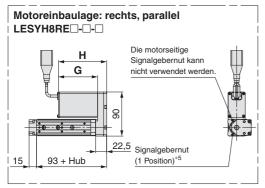
- *1 Die Geschwindigkeit ändert sich entsprechend der Nutzlast Beachten Sie das "Geschwindigkeits-Nutzlast-Diagramm (Orientierungshilfe)" auf Seite 4.
- *2 Die Genauigkeit der Schubkraft beträgt ± 20 % (v. E.).
- *3 Geschwindigkeit und Kraft können je nach Kabellänge, Last und Anbaubedingungen variieren. Wenn die Kabellänge 5 m überschreitet, nimmt der Wert pro 5 m bis zu 10 % ab. (Bei 15 m: reduziert um bis zu 20 %)
- *4 Ein Richtwert zur Fehlerkorrektur im Umkehrbetrieb
- *5 Vibrationsfestigkeit: Bei einem Test in einem Bereich von 45 bis 2000 Hz sind keine Fehlfunktionen aufgetreten. Der Fallversuch wurde sowohl in axialer als auch in vertikaler Richtung zur Gewindespindel durchgeführt. (Der Versuch erfolgte mit dem Antrieb in Startphase.)

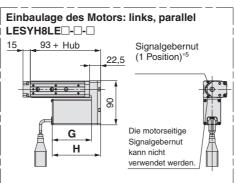
 Stoßfestigkeit: Beim Testen des Antriebs mittels Fallversuch in axiale Richtung und senkrechte Richtung zur Gewindespindel ist keine Fehlfunktion
- aufgetreten. (Der Versuch erfolgte mit dem Antrieb in Startphase.)

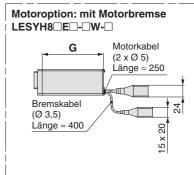
 *6 Die Leistungsaufnahme (einschließlich Controller) gilt, wenn der Antrieb in Betrieb ist.
- *7 Die Standby-Leistungsaufnahme im Betriebszustand (einschließlich Controller) gilt, wenn der Antrieb in Position gehalten wird. Außer während des Schubbetriebs
- *8 Die maximale momentane Leistungsaufnahme (inkl. Controller) gilt, wenn der Antrieb in Betrieb ist. Dieser Wert kann für die Wahl der Spannungsversorgung verwendet werden.
- *9 Nur mit Motorbremse
- *10 Für einen Antrieb mit Motorbremse muss die Leistungsaufnahme der Motorbremse hinzugerechnet werden.

Gewicht

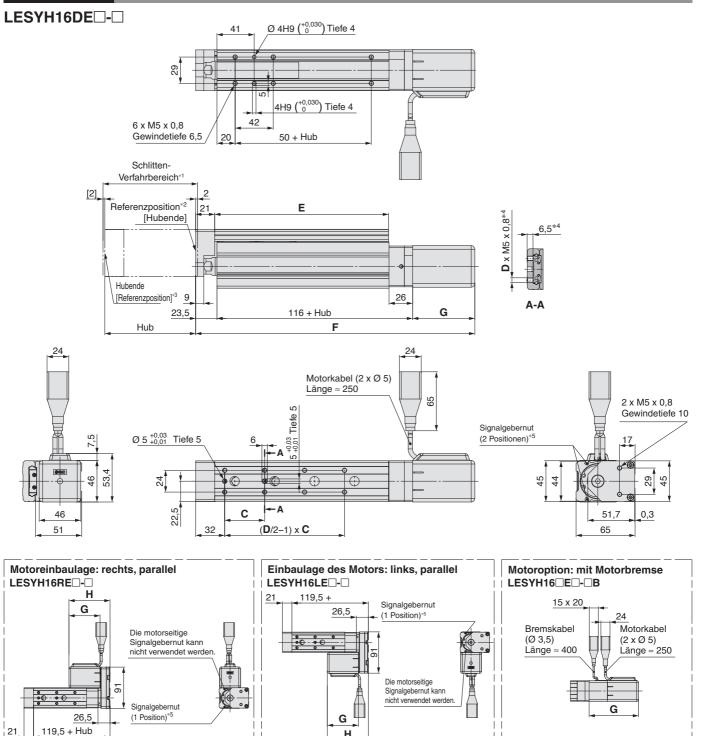

Masse [k								
Modell	Hub							
Modell	50	75	100	150				
LESYH8□E	1,06	1,23	_	_				
LESYH16□E	1,87	_	2,26	_				
LESYH25□E	3,50	_	4,10	4,90				


Zusätzliches Gewicht [k						
Größe	8	16	25			
Motorbremse	0,16	0,32	0,61			




Abmessungen

LESYH8D□E□-□

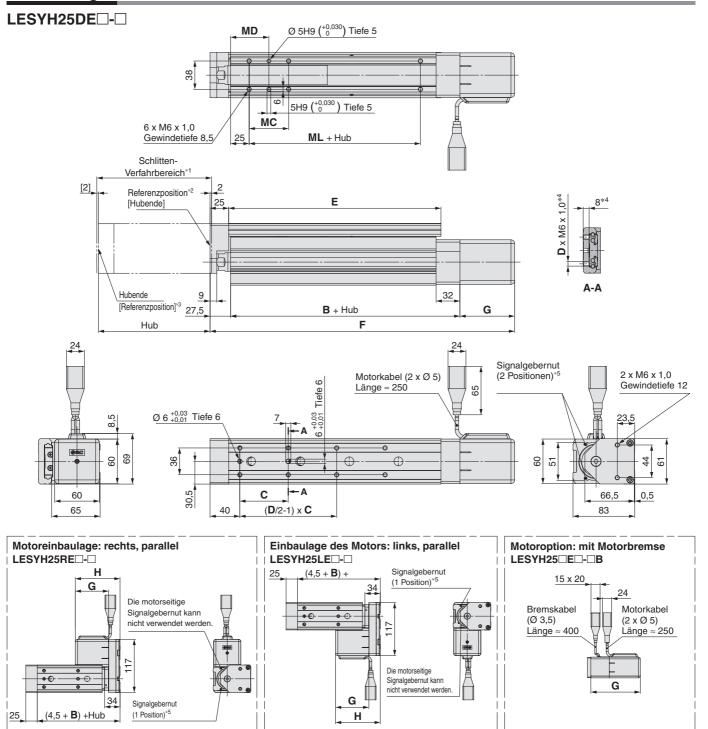

- *1 Bereich, innerhalb dessen der Schlitten sich bewegen kann, wenn dieser zurück zur Referenzposition verfährt.
- Stellen Sie sicher, dass am Schlitten angebrachte Werkstücke nicht die Werkstücke und Anlagenteile im Umfeld des Schlittens behindern.
- *2 Position nach Rückstellung zur Referenzposition
- *3 [] wenn sich die Refernzposition von Eingefahren zu Ausgefahren geändert ist
- *4 Wenn die Schrauben zu lang sind, können sie mit dem Führungsblock in Berührung kommen und Fehlfunktionen verursachen. Verwenden Sie Schrauben, deren Länge die Gewindelänge nicht überschreitet.
- *5 Zur Überprüfung von Grenz- und Zwischensignal. Gilt für das Modell D-M9□, D-M9□E und D-M9□W (2-farbige Anzeige) Die Signalgeber müssen separat bestellt werden. Für weitere Details siehe **Web-Katalog**.

Abmessungen [mm]									
Modell	Hub	_	_	ohne	Motorbr	mit I	Motorbremse		
Modell	Пир			F	G	Н	F	G	Н
LESYH8□E□	50	46	111	241,5	80	98,5	286,5	125	143,5
LESTHOLEL	75	50	137	266,5	80	96,5	311,5	123	143,3

Serie LESYH

Schrittmotor (24 VDC) mit batterielosem Absolut-Encoder

<u>Abmessungen</u>


- *1 Bereich, innerhalb dessen der Schlitten sich bewegen kann, wenn dieser zurück zur Ausgangsposition verfährt. Stellen Sie sicher, dass am Schlitten angebrachte Werkstücke nicht die Werkstücke und Anlagenteile im Umfeld des Schlittens behindert.
- *2 Position nach Rückstellung zur Ausgangsposition
- *3 [] wenn sich die Richtung der Rückstellung zur Referenzposition geändert hat
- *4 Wenn die Werkstückhalteschrauben zu lang sind, können sie mit dem Führungsblock in Berührung kommen und Fehlfunktionen verursachen. Verwenden Sie Schrauben, deren Länge die Gewindelänge nicht überschreitet.
- *5 Zur Überprüfung von Grenz- und Zwischensignal. Gilt für das Modell D-M9□, D-M9□E und D-M9□W (2-farbige Anzeige) Die Signalgeber müssen separat bestellt werden. Für weitere Details siehe **Web-Katalog**.

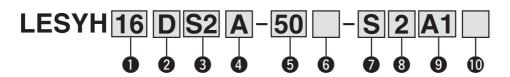
	Abmessungen [mm]										
	Modell	Link C D E		_	ohne Motorbremse				mit Motorbremse		
Modeli		Hub	C	ט		F	G	Н	F	G	Н
LESYH16□E□		50	40	6	116,5	258	68.5	88,5	298,5	109	129
	LLSIIIIOLEL	100	11	Ω	101.5	308	00,5 00,5	2/18/5	109	129	

Elektrischer Kompaktschlitten, hochsteife Ausführung Serie LESYH

Schrittmotor (24 VDC) mit batterielosem Absolut-Encoder

Abmessungen

- *1 Bereich, innerhalb dessen der Schlitten sich bewegen kann, wenn dieser zurück zur Ausgangsposition verfährt.
 Stellen Sie sicher, dass am Schlitten angebrachte Werkstücke nicht die Werkstücke und Anlagenteile im Umfeld des Schlittens behindert.
- *2 Position nach Rückstellung zur Ausgangsposition
- *3 [] wenn sich die Richtung der Rückstellung zur Referenzposition geändert hat
- *4 Wenn die Werkstückhalteschrauben zu lang sind, können sie mit dem Führungsblock in Berührung kommen und Fehlfunktionen verursachen. Verwenden Sie Schrauben, deren Länge die Gewindelänge nicht überschreitet.
- *5 Zur Überprüfung von Grenz- und Zwischensignal. Gilt für das Modell D-M9□, D-M9□E und D-M9□W (2-farbige Anzeige) Die Signalgeber müssen separat bestellt werden. Für weitere Details siehe **Web-Katalog**.


Abmessung	en														[mm]
Mode	All	Hub	В	_	7	_	ohne	Motorbr	emse	mit I	Motorbre	mse	МС	MD	ML
ivioue) II	пир				_	F	G	Н	F	G	Н	IVIC	IVID	IVIL
		50	128,5	75	4	143	279,5			322,5			36	43	50
LESYH2	5□E□	100	120,5	48	8	207	329,5	73,5	98,5	372,5	116,5	141,5	30	43	30
		150	158,5	65	٥	285	409,5			452,5			53	51,5	80

Elektrischer Kompaktschlitten, hochsteife Ausführung

Serie LESYH

Bestellschlüssel

16 25

Motoreinbaulage D inline

D	inline
R	rechts, parallel
L	links, parallel

3 Motorausführung

Symbol	Ausführung	Leistung [W]	Baugröße	Kompatible Endstufen*3
S2 *1	AC-Servomotor	100	16	LECSA□-S1
S3	(Inkremental-Encoder)	200	25	LECSA□-S3
T6 *2	AC-Servomotor	100	16	LECSB2-T5 LECSC2-T5 LECSS2-T5 LECSN2-T5-□
Т7	(Absolut-Encoder)	200	25	LECSB2-T7 LECSC2-T7 LECSS2-T7 LECSN2-T7-□

- *1 Für die Motorausführung S2 ist der Bestellnummernanhang der Endstufe S1.
- *2 Für die Motorausführung T6 ist die Bestellnummer der Endstufe LECS□2-T5.
- *3 Weitere Einzelheiten zur Endstufe entnehmen Sie dem Web-Katalog.

4 Spindelsteigung [mm]

	Grö	iße
	16	25*4
Α	12	16 (20)
В	6	8 (10)

*4 Bei den in () angegebenen Werten handelt es sich um die Steigungen für die Ausführung mit Motormontage rechts/links oder parallel. (entspricht der Steigungen einschließlich der Riemenübersetzung [1.25:1])

Kabelausführung*5 *6

_	ohne Kabel				
S	Standardkabel				
R	Robotikkabel (flexibles Kabel)				

- *5 Ein Motorkabel und ein Encoderkabel sind im Lieferumfang enthalten. (Ein Bremskabel ist ebenfalls enthalten, wenn die Motoroption "B: mit Motorbremse" ausgewählt wird.)
- *6 Die Standardkabel-Einführungsrichtung ist
 - Parallel: (A) Achsenseite
 Axial: (B) Gegen-Achsenseite

(Einzelheiten entnehmen Sie dem Web-Katalog.)

Hub [mm]

	Größe				
	16	25			
50	•	•			
100	•	•			
150	_	•			

6 Motoroption

_	ohne Motorbremse
В	mit Motorbremse

8 Kabellänge [m]

_	ohne Kabel
2	2
5	5
Α	10

Einzelheiten zu den Signalgebern finden Sie im **Web-Katalog**.

Elektrischer Kompaktschlitten, hochsteife Ausführung Serie LESYH

Motoreinbaulage: rechts, parallel

Motoreinbaulage: inline

9 Endstufenausführung*7

	actaroria actarii arrg	
Symbol	Kompatible Endstufen	Versorgungsspannung [V]
_	ohne Endstufe	_
A1	LECSA1-S□	100 bis 120
A2	LECSA2-S□	200 bis 230
B2	LECSB2-T□	200 bis 240
C2	LECSC2-T□	200 bis 230
S2	LECSS2-T□	200 bis 240
N2	LECSN2-T□	200 bis 240
92	LECSN2-T□-9	200 bis 240
E2	LECSN2-T□-E	200 bis 240
P2	LECSN2-T□-P	200 bis 240

*7 Bei Wahl der Endstufenausführung ist ein Kabel inbegriffen. Kabelausführung und -länge auswählen. Beispiel)

S2S2: Standardkabel (2 m) + Endstufe (LECSS2)

S2: Standardkabel (2 m)

—: ohne Kabel und Endstufe

1/O-Kabellänge [m]

	110000101190 [111]
_	ohne Kabel
Н	mit Stecker
1	1,5

Kompatible Endstufen

Impulseingang-Ausführung/ Positionierausführung Endstufenausführung		Impulseingang- Ausführung	CC-Link	SSCNETIIIH	Netzwerkkarten- ausführung	
Serie	LECSA	LECSB-T	LECSC-T	LECSS-T	LECSN-T	
Anzahl der Positionstabellen*8	May 7		Bis zu 255 (2 Stationen belegt)	_	Max. 255	
Impulseingang	0	0	_	_	_	
verwendbares Netzwerk	_	_	CC-Link	SSCNETII/H	PROFINET EtherCAT® EtherNet/IP™	
Encoder	Inkremental-Encoder 17-bit	Absolut-Encoder 22-bit	Absolut-Encoder 18-bit	Absolut-Encoder 22-bit	Absolut-Encoder 22-bit	
Kommunikations- funktion USB-Kommunikation USB-Kommunikation, R		RS422-Kommunikation	USB-Kommunikation	USB-Kommunikation		
Versorgungs- spannung [V]	Versorgungs- 100 bis 120 VAC, 50/60 Hz 200 bis 240 VAC		200 bis 230 VAC (50/60 Hz)	200 bis 240 VAC (50/60 Hz)	200 bis 240 VAC (50/60 Hz)	

Technische Daten: LECSA

* Die folgende Seite enthält Einzelheiten zum Modell LECSS-T.

Modell			LESYH	l16□S2	LESYH25	S3 (Parallel)	LESYH25DS3 (Axial)					
	Hub [mm]		50, 100			50, 10), 150					
	max. Nutzlast [kg]	Horizontal	3	3	1	2	1	2				
	IIIax. Nutziast [kg]	Vertikal	6	12	10	20	10	20				
S	Kraft [N]*1 (Sollwert: 15 bis 30 %)		65 bis 131	127 bis 255	79 bis 157	154 bis 308	98 bis 197	192 bis 385				
ieb	max. Geschwindigkeit [mm/s		400	200	400	200	400	200				
Antriebs	Schubgeschwindigkeit	[mm/s]*2	Max	Max. 35 Max. 30								
	Max. Beschleunigung/Verzöge	rung [mm/s²]			5.0	000						
des	Positionierwiederholgena	uigkeit [mm]			±0	,01						
Daten	Umkehrspiel*3 [mm]				max	c. 0,1						
le Da	Steigung [mm] (einso Riemenübersetzung)	chließlich	12	6	20	10	16	8				
sch	Stoß-/Vibrationsfestigke	it[m/s²]*4			50	/20						
Technische	Funktionsweise		Kugelumlaufspindel Kugelumlaufs		Kugelumlaufspinde	el + Riemen [1,25:1]	Kugelumlaufspindel					
Ĕ	Führung		Linearführung (Kugelumlauf)									
	Betriebstemperaturber	eich [°C]	5 bis 40									
	Luftfeuchtigkeitsbere	ich [%RH]	max. 90 (keine Kondensation)									
	externer Bremswider	rstand	kann je nach Geschwindigkeit und Nutzlast erforderlich sein (siehe Seite 10)									
en	Motorleistung/Größe)	100 W/□40 200 W/□60									
ö	Motorausführung		AC-Servomotor (100/200 VAC)									
ikat	Encoder		Motortypausführung S2, S3: Inkremental-Encoder 17-bit (Auflösung: 131072 Imp/U)									
Spezifikationen	Leistungsaufnahme [W]*5	horizontal	4	5	65							
	Leistangsaumanne [w]	vertikal	14	45	175							
che	Standby-Leistungsaufnahme	horizontal	2	2	2							
tris	im Betriebszustand [W]*6	vertikal	3	3	8							
Elektrische	max. momentane Leistungsaufnahme	[W] * ⁷	445 724									
emse	Ausführung*8				spannungsfreie	Funktionsweise						
Motorbr	Haltekraft [N]		131	255	157	308	197	385				
Technische Daten Motorbremse	Leistungsaufnahme [V bei 20 °C *9	V]	6	,3		7,	9					
Techn	Nennspannung [V]				24 VE	OC 0 10 %						

- *1 Der Krafteinstellbereich (Sollwerte für die Endstufe) für die Kraftsteuerung Drehmomentregelmodus. Beachten Sie bei der Einstellung das "Kraftumwandlungsdiagramm" auf Seite 11.
- *2 Die zulässige Geschwindigkeit für den Stoß mit dem Werkstück im Drehmomentregelmodus.
- *3 Ein Richtwert zur Fehlerkorrektur im Umkehrbetrieb
- *4 Stoßfestigkeit: Beim Testen des Antriebs mittels Fallversuch in axiale als auch in vertikaler Richtung zur Gewindespindel ist keine Fehlfunktion aufgetreten. (Der Versuch erfolgte mit dem Antrieb in Startphase.)
 - Vibrationsfestigkeit: Keine Fehlfunktion im Versuch von 45 bis 2000 Hz. Der Fallversuch wurde sowohl in axialer als auch in vertikaler Richtung zur Gewindespindel durchgeführt. (Der Versuch erfolgte mit dem Antrieb in Startphase.)
- *5 Die Leistungsaufnahme (einschließlich Endstufe) gilt, wenn der Antrieb in Betrieb ist.
- *6 Die Standby-Leistungsaufnahme im Betriebszustand (einschließlich Endstufe) gilt, wenn der Antrieb während des Betriebs in Position gehalten wird.
- *7 Die maximale momentane Leistungsaufnahme (einschließlich Endstufe) gilt, wenn der Antrieb in Betrieb ist.
- *8 Nur bei Auswahl der Motoroption "Mit Motorbremse"
- *9 Für einen Antrieb mit Motorbremse muss die Leistungsaufnahme für die Motorbremse hinzugerechnet werden.

Gewicht

Masse							
Modell	Hub						
Modell	50	100	150				
LESYH16□S2	1,96	2,35	_				
LESYH25□S3	3,83	4,43	5,83				

Zusätzliches Gewicht					
Größe	25				
mit Motorbremse	0,2	0,4			

Technische Daten: LECS□-T

Modell			LESYH	I16□T6	LESYH25	T7 (Parallel)	LESYH25DT7 (Axial)				
	Hub [mm]		50,	100		50, 10	0, 150				
	max. Nutzlast [kg]	Horizontal	8	3	1	2	12				
	max. Nutziast [kg]	Vertikal	6	12	10	20	10	20			
sq	Kraft [N]*1 (Sollwert: 12 bis 24 %) max. Geschwindigkeit [mm/s]		65 bis 131	127 bis 255	79 bis 157	154 bis 308	98 bis 197	192 bis 385			
Antriebs			400	200	400	200	400	200			
	Schubgeschwindigkeit	[mm/s]*2	max	max. 35 Max. 30							
des	max. Beschleunigung/Verzöge	erung [mm/s²]			5.0	000					
	Positionierwiederholgenau	uigkeit [mm]			±0	,01					
Daten	Umkehrspiel*3 [mm]				max	c. 0,1					
	Steigung [mm] (einschli Riemenübersetzung)	eßlich	12	6	20	10	16	8			
scl	Stoß-/Vibrationsfestigke	it[m/s ²]* ⁴			50	/20					
Technische	Funktionsweise		Kugelumlaufspindel + Riemen (pa	arallel), Kugelumlaufspindel (axial)	Kugelumlaufspinde	el + Riemen [1,25:1]	Kugeluml	aufspindel			
ြို	Führung		Linearführung (Kugelumlauf)								
	Betriebstemperaturbere	eich [°C]	5 bis 40								
	Luftfeuchtigkeitsbereic	h [%RH]	max. 90 (keine Kondensation)								
	externer Bremswider	stand	kann je nach Geschwindigkeit und Nutzlast erforderlich sein (siehe Seite 10)								
_	Motorleistung/Größe		100 W/□40 200 W/□60								
ouc	Motorausführung		AC-Servomotor (200 VAC)								
Spezifikationen	Encoder*10		Motorausführung T6, T7: Absolut-Encoder 22-bit (Auflösung: 4194304 lmp/U) (für LECSB-T□, LECSS-T□, LECSN-T□) Motorausführung T6, T7: Absolut-Encoder 18-bit (Auflösung: 262144 lmp/U) (Für LECSC-T□)								
	Lalatan nanta kanan nanés	horizontal	4	5	65						
Elektrische	Leistungsaufnahme [W]*5	vertikal	14	45	175						
ris	Standby-Leistungsaufnahme	horizontal	2	2	2						
ekt	im Betriebszustand [W]*6	vertikal	8	3	8						
Ш	max. momentane Leistungsau	ufnahme [W]*7	44	45		72	24				
seinheit	Ausführung*8				spannungsfreie	Funktionsweise					
riegelung	Haltekraft [N]		131	255	157	308	197	385			
Fechnische Daten Verriegelungseinheit	Leistungsaufnahme bei 20 °C *9	[W]	6,3 7,9								
Technis	Nennspannung [V]		\ f"		24 VD	OC 0 -10 %	le a i alau Piu atalluus				

*1 Der Krafteinstellbereich (Sollwerte für die Endstufe) für die Kraftsteuerung Drehmomentregelmodus. Beachten Sie bei der Einstellung das "Kraftumwandlungsdiagramm" auf Seite 12.

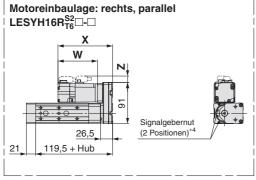
Die Endstufen LECSS-T oder LECSB2-T sind zu wählen, wenn die Funktion des Schubbetriebes entsprechend der Controller der Serie LECP6/JXC5/61 sein soll. Die Punktetabelle-Nr. -Eingabemethode wird für das LECSB2-T verwendet.

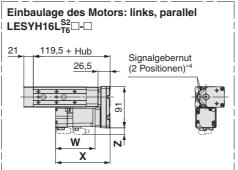
Wenn Sie sich für das Modell LECSS2-T entscheiden, kombinieren Sie es mit einem Simple-Motion-Modul (hergestellt von Mitsubishi Electric Corporation), das über eine Funktion für den Schubbetrieb verfügt.

- *2 Die zulässige Geschwindigkeit Stoß mit dem Werkstück im Drehmomentregelmodus.
- *3 Ein Richtwert zur Fehlerkorrektur im Umkehrbetrieb
- *4 Stoßfestigkeit: Beim Testen des Antriebs mittels Fallversuch in axiale als auch in vertikaler Richtung zur Gewindespindel ist keine Fehlfunktion aufgetreten. (Der Versuch erfolgte mit dem Antrieb in Startphase.)
 - Vibrationsfestigkeit: Keine Fehlfunktion im Versuch von 45 bis 2000 Hz. Der Fallversuch wurde sowohl in axialer als auch in vertikaler Richtung zur Gewindespindel durchgeführt. (Der Versuch erfolgte mit dem Antrieb in Startphase.)
- *5 Die Leistungsaufnahme (einschließlich Endstufe) gilt, wenn der Antrieb in Betrieb ist.
- *6 Die Standby-Leistungsaufnahme im Betriebszustand (einschließlich Endstufe) gilt, wenn der Antrieb während des Betriebs in der Einstellposition angehalten wird.
- *7 Die maximale momentane Leistungsaufnahme (einschließlich Endstufe) gilt, wenn der Antrieb in Betrieb ist.
- *8 Nur bei Auswahl der Motoroption "Mit Motorbremse"
- *9 Für einen Antrieb mit Motorbremse muss die Leistungsaufnahme für die Motorbremse hinzugerechnet werden.
- *10 Die Auflösung hängt von die Ausführung der Endstufe ab.

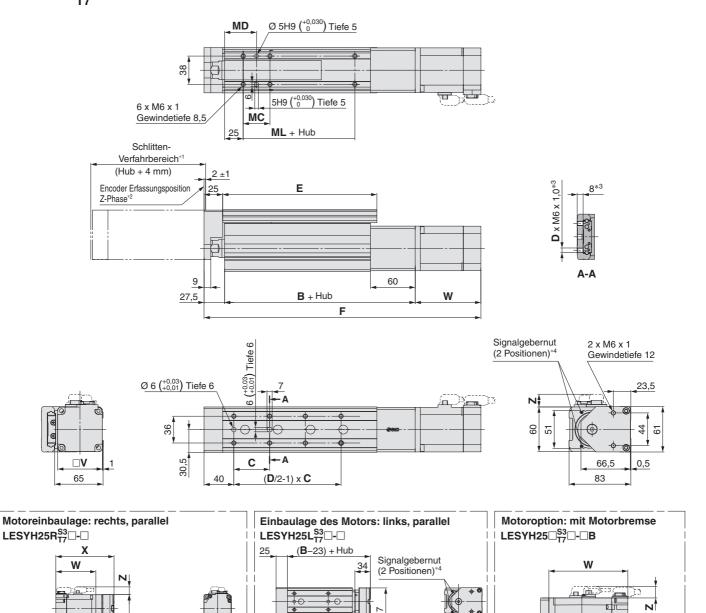
Gewicht

Masse							
Modell	Hub						
Modeli	50	100	150				
LESYH16□T6	2,02	2,41	_				
LESYH25□T7	3,77	4,37	5,77				


Zusätzliches Gewicht					
Größe	25				
mit Motorbremse	0,3	0,4			



Abmessungen LESYH16D^{S2}_{T6}□-□



- *1 Bereich, innerhalb dessen der Schlitten sich bewegen kann, wenn dieser zurück zur Referenzposition verfährt. Stellen Sie sicher, dass am Schlitten angebrachte Werkstücke nicht die Werkstücke und Anlagenteile im Umfeld des Schlittens behindert.
- *2 Die Erfassungsposition der Z-Phase vom Hubende
- *3 Wenn die Schrauben zu lang sind, können sie mit dem Führungsblock in Berührung kommen und Fehlfunktionen verursachen. Verwenden Sie Schrauben, deren Länge die Gewindelänge nicht überschreitet.
- *4 Zur Überprüfung von Grenz- und Zwischensignal. Gilt für das Modell D-M9□, D-M9□E und D-M9□W (2-farbige Anzeige) Die Signalgeber müssen separat bestellt werden. Für weitere Details siehe Web-Katalog.

Abmessungen												[mm]
Modell	Hub	С	D	E	ohne Motorbremse mit Motorbremse							
Modeli					F	W	X	Z	F	W	X	Z
LESYH16□S2□	50	40	6	116,5	297,5	87	120		334,4	123,9	156,9	16,3
LESTHIOLS2L	100	44	8	191,5	347,5		120	14,6	384,4			
LESYH16□T6□	50	40	6	116,5	292,9	82,4	115.4	,	334	123,5	156	10,3
LESTHIO_TO_	100	44	8	191,5	342,9	02,4	115,4		384	123,5	130	

Abmessungen

LESYH25D^{S3}□-□

*1 Bereich, innerhalb dessen der Schlitten sich bewegen kann, wenn dieser zurück zur Referenzposition verfährt. Stellen Sie sicher, dass am Schlitten angebrachte Werkstücke nicht die Werkstücke und Anlagenteile im Umfeld des Schlittens behindert.

w

X

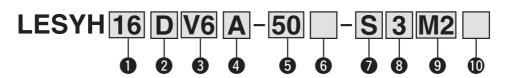
N

*2 Die Erfassungsposition der Z-Phase vom Hubende

(**B**–23) + Hub

Signalgebernut (2 Positionen)*4

- *3 Wenn die Schrauben zu lang sind, können sie mit dem Führungsblock in Berührung kommen und Fehlfunktionen verursachen. Verwenden Sie Schrauben, deren Länge die Gewindelänge nicht überschreitet.
- *4 Zur Überprüfung von Grenz- und Zwischensignal. Gilt für das Modell D-M9□, D-M9□E und D-M9□W (2-farbige Anzeige) Die Signalgeber müssen separat bestellt werden. Für weitere Details siehe **Web-Katalog**.


Abmessungen																[mm]
Modell	Mandall Link		С	0	_	ol	nne Mot	orbrems	е		mit Moto	rbremse		МС	MD	ML
Modeli	Hub	В	C	ט	DE	F	W	Х	Z	F	W	Х	Z	IVIC	IVID	IVIL
	50	156,3	75	4	143	322	372 88,2	128,2	17,1	350,6	116,8			36	43	50
LESYH25□S3□	100	130,3	48	0	207	372				400,6		156,8				
	150	186,3	65	1 °	285	452				480,6			17,1		51,5	80
LESYH25□T7□	50	156,3	75	4	143	310,4				347,2			17,1	36	40	50
	100	100,3	48	8	207	360,4	76,6	116,6		397,2	113,4	153,4		36	43	
	150	186,3	65	0	285	440,4				477,2				53	51,5	80

Elektrischer Kompaktschlitten, hochsteife Ausführung

Serie LESYH

Bestellschlüssel

Baugröße

25

öße	2 Motoreinbaulage							
	D	inline						
	R	rechts, paralle						

links, parallel

3 Motorausführung

Symbol	Ausführung	Leistung [W]	Antriebsgröße	Kompatible Endstufen
V6*1	AC-Servomotor	100	16	LECYM2-V5 LECYU2-V5
V7	(Absolut-Encoder)	200	25	LECYM2-V7 LECYU2-V7

^{*1} Für die Motorausführung V6 ist der Bestellnummernanhang der Endstufe V5.

4 Spindelsteigung [mm]

	Baugröße							
	16	25 *2						
Α	12	16 (20)						
В	6	8 (10)						

*2 Bei den in () angegebenen Werten handelt es sich um die Steigungen für die Ausführung mit Montage rechts/links parallel. (Enspricht der Steigung einschließlich der Riemenübersetzung [1.25:1])

Hub [mm]

	Baug	ıröße
	16	25
50	•	•
100	•	•
150	_	•

6 Motoroption

_	ohne Option
В	mit Motorbremse

7 Kabelausführung^{∗3}

_	ohne Kabel
S	Standardkabel
R	Robotikkabel (flexibles Kabel)

*3 Ein Motorkabel und ein Encoderkabel sind im Lieferumfang enthalten. Ein Motorkabel für die Motorbremse ist im Lieferumfang enthalten, wenn die Motoroption "B: mit Motorbremse" ausgewählt wird.

8 Kabellänge [m]*4

_	ohne Kabel				
3	3				
5	5				
Α	10				

^{*4} Die Länge der Motor- und Encoderkabel ist gleich. (bei Motorbremse)

Motoreinbaulage: rechts, parallel

Motoreinbaulage: inline

9 Endstufenausführung*5

Symbol	Kompatible Endstufen	Versorgungs- spannung [V]		
_	ohne Endstufe	_		
M2	LECYM2-V□	200 bis 230		
U2	LECYU2-V□	200 bis 230		

^{*5} Bei Wahl der Endstufenausführung ist ein Kabel inbegriffen.

Kabelausführung und -länge auswählen.

I/O-Kabellänge [m]*6

_ ne rememange []							
	ohne Kabel						
Н	mit Stecker						
1	1,5						

*6 Wenn "—: ohne Endstufe" ausgewählt wird, kann nur "—: ohne Kabel" ausgewählt werden. Siehe Webkatalog, wenn ein I/O-Kabel benötigt wird. (Einzelheiten zu den Optionen finden Sie im Web-Katalog.)

Kompatible Endstufen

Endstufenausführung	■ MECHATROLNK -II-Ausführung	■ MECHATROLINK -II-Ausführung				
Serie	LECYM	LECYU				
verwendbares Netzwerk	MECHATROLINK-Ⅱ	MECHATROLINK-Ⅲ				
Encoder	Absolut-En	coder 20-bit				
Kommunikation	USB-Kommunikation, RS-422-Kommunikation					
Versorgungsspannung	200 bis 230 V	/AC, 50/60 Hz				

Technische Daten

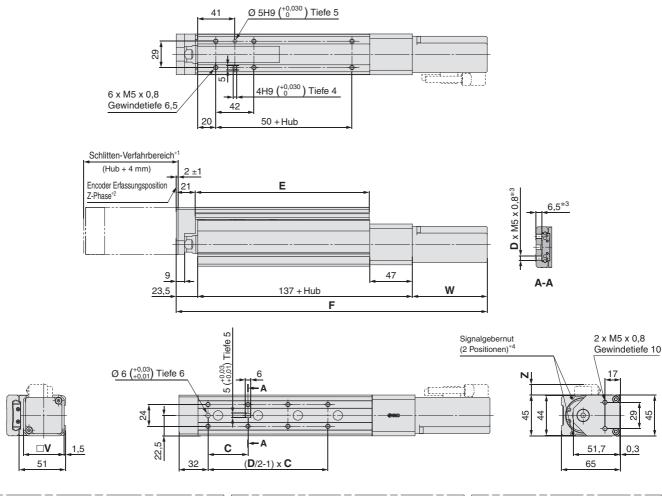
Modell			LESYH	16□V6	LESYH25PV7 (Parallel) LESYH25DV7 (Ax				
	Hub [mm]		50,	100		50, 100, 150			
	max. Nutzlast [kg]	horizontal	8		1	2	1	2	
	max. Nutziast [kg]	vertikal	6	12	10	20	10	20	
ps	Kraft [N]*1(Sollwert: 45		65 bis 131	127 bis 255	79 bis 157	154 bis 308	98 bis 197	192 bis 385	
Antriebs	max. Geschwindigkeit [mm/s]		400	200	400	200	400	200	
Ant	Schubgeschwindigkeit	[mm/s]*2	max	. 35		max	. 30		
des	max. Beschleunigung/Verzögerung [mm/s²]				5.0	000			
ğ	Positionierwiederholgenau	igkeit [mm]			±0.	01			
Daten	Umkehrspiel*3[mm]				max	. 0,1			
	Steigung [mm] (einschließlich Rier	•	12	6	20	10	16	8	
che	Stoß-/Vibrationsfestigkeit[m/s²]*4				50/20				
Technische	Funktionsweise		Kugelumlaufspindel + Riemen (pa	rallel), Kugelumlaufspindel (axial)	Kugelumlaufspindel + Riemen [1,25:1] Kugelumlaufspindel				
)ch	Führung		Linearführung (Kugelumlauf)						
Ĕ	Betriebstemperaturbereich [°C]		5 bis 40						
	Luftfeuchtigkeitsbereich [%RH]		max. 90 (keine Kondensation)						
	Erforderliche Bedingungen für		nicht erforderlich						
	den Bremswiderstand*5 [kg]	vertikal	mir	•	min. 4				
e	Motorleistung/Größe	•	100 W	V/□40	200 W/□60				
tion	Motorausführung		AC-Servomotor (200 VAC)						
Spezifikationen	Encoder				ncoder 20-bit (Auflösung: 1048576 Pulse/U)				
bez	Leistungsaufnahme [W]*6	horizontal	4	-	65				
		vertikal	14	_	175				
irisc	Standby-Leistungsaufnahme	horizontal	2		2				
Elektrische	im Betriebszustand [W]*7	vertikal	3		8				
	max. momentane Leistungsaufnahme [W]*8		44	15		72	24		
prems	Ausführung*9				spannungsfreie	Funktionsweise			
Motor	Haltekraft [N]		131	255	157	308	197	385	
echnische Daten Motorbremse	Leistungsaufnahme [W]		5,	,5	6				
Nennspannung [V]					24 VDC +10 %				

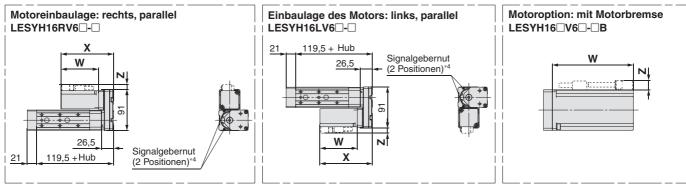
- *1 Der Krafteinstellbereich (Sollwerte für die Endstufe) für die Kraftsteuerung Drehmomentregelmodus. Beachten Sie bei der Einstellung das "Kraftumwandlungsdiagramm" auf Seite 16.
- *2 Die zulässige Geschwindigkeit für den Stoß mit dem Werkstück im Drehmomentregelmodus.
- *3 Ein Richtwert zur Fehlerkorrektur im Umkehrbetrieb
- *4 Stoßfestigkeit: Beim Testen des Antriebs mittels Fallversuch sowohl in axialer, als auch in vertikaler Richtung zur Gewindespindel ist keine Fehlfunktion aufgetreten. (Der Versuch erfolgte mit dem Antrieb in Startphase.)

 Vibrationsfestigkeit: Keine Fehlfunktion im Versuch von 45 bis 2000 Hz. Der Fallversuch wurde sowohl in axialer als auch in vertikaler Richtung zur
- Gewindespindel durchgeführt. (Der Versuch erfolgte mit dem Antrieb in Startphase.)

 *5 Die Nutzlastbedingungen, die den Bremswiderstand bei Betrieb mit der maximalen Geschwindigkeit erfordern (Einschaltdauer: 100 %). Bestellen Sie den
- Bremswiderstand separat. Einzelheiten finden Sie unter "Erforderliche Bedingungen für den Bremswiderstand (Orientierungshilfe)" auf Seite 15. *6 Die Leistungsaufnahme (einschließlich Endstufe) gilt, wenn der Antrieb in Betrieb ist.
- *7 Die Standby-Leistungsaufnahme im Betriebszustand (einschließlich Endstufe) gilt, wenn der Antrieb während des Betriebs in Position gehalten wird.
- *8 Die maximale momentane Leistungsaufnahme (einschließlich Endstufe) gilt, wenn der Antrieb in Betrieb ist.
- *9 Nur bei Auswahl der Motoroption "Mit Motorbremse"
- *10 Für einen Antrieb mit Motorbremse muss die Leistungsaufnahme für die Motorbremse hinzugerechnet werden.

Gewicht

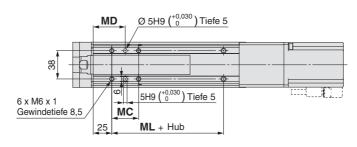

	Masse								
L	Modell		Hub						
	iviodeli	50	100	150					
	LESYH16□V6	1,85	2,24	_					
	LESYH25□V7	3,68	4,28	5,68					

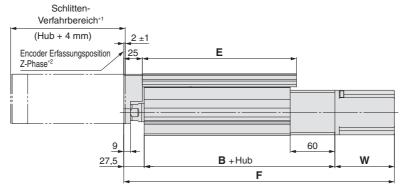

Zusätzliches Gewi	cht	[kg]
Größe	16	25
mit Motorbremse	0,3	0,6

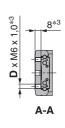
Abmessungen

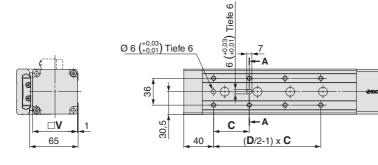
LESYH16DV6□-□

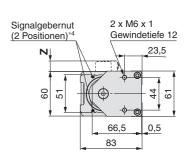
- *1 Bereich, innerhalb dessen der Schlitten sich bewegen kann, wenn dieser zurück zur Referenzposition verfährt. Stellen Sie sicher, dass am Schlitten angebrachte Werkstücke nicht die Werkstücke und Anlagenteile im Umfeld des Schlittens behindert.
- *2 Die Erfassungsposition der Z-Phase vom Hubende
- *3 Wenn die Schrauben zu lang sind, können sie mit dem Führungsblock in Berührung kommen und Fehlfunktionen verursachen. Verwenden Sie Schrauben, deren Länge die Gewindelänge nicht überschreitet.
- *4 Zur Überprüfung von Grenz- und Zwischensignal. Gilt für das Modell D-M9□, D-M9□E und D-M9□W (2-farbige Anzeige) Die Signalgeber müssen separat bestellt werden. Für weitere Details siehe **Web-Katalog**.

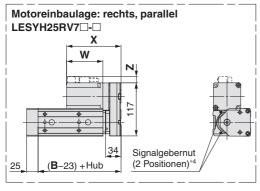

Abmessungen												[mm]
Modell	Hub	_	D	_	ohne Motorbremse mit Motorbremse							
Modell	Hub	C		_	F	W	Х	Z	F	W	Х	Z
LESYH16□V6□	50	40	6	116,5	293	82,5	115,5	11.5	338	127.5	160,5	11.5
LESTHIOLVOL	100	44	8	191,5	343	0∠,5		11,5	388	127,5		11,5



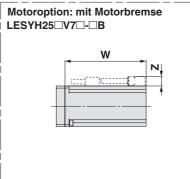



Abmessungen


LESYH25DV7□-□





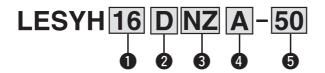


- *1 Bereich, innerhalb dessen der Schlitten sich bewegen kann, wenn dieser zurück zur Referenzposition verfährt. Stellen Sie sicher, dass am Schlitten angebrachte Werkstücke nicht die Werkstücke und Anlagenteile im Umfeld des Schlittens behindert.
- *2 Die Erfassungsposition der Z-Phase vom Hubende
- *3 Wenn die Schrauben zu lang sind, können sie mit dem Führungsblock in Berührung kommen und Fehlfunktionen verursachen. Verwenden Sie Schrauben, deren Länge die Gewindelänge nicht überschreitet.
- *4 Zur Überprüfung von Grenz- und Zwischensignal. Gilt für das Modell D-M9□, D-M9□E und D-M9□W (2-farbige Anzeige) Die Signalgeber müssen separat bestellt werden. Für weitere Details siehe Web-Katalog.

Abmessungen

[mm]

Modell	Hub B C		(ohne Motorbremse			mit Motorbremse				МС	MD	ML	
Modell	Hub	В			_	F	W	Х	Z	F	W	Х	Z	IVIC	IVID	IVIL
	50	156,3	75	4	143	313,8		120		353,8				36	43	50
LESYH25□V7□	100	130,3	48	0	207	363,8	80		20 14	403,8	120 160	160	14			30
	150	186,3	65	٥	285	443,8				483,8				53	51,5	80


Motorlose Ausführung

Elektrischer Kompaktschlitten, hochsteife Ausführung

Serie LESYH LESYH16, 25

Bestellschlüssel

16 25

2 Mo	toreinbaulage
D	inline
R	rechts parallel

links, parallel

4 Spindelsteigung [mm]

	Baugröße						
	16	25*1					
Α	12	16 (20)					
В	6	8 (10)					

^{*1} Bei den in () angegebenen Werten handelt es sich um die Steigungen für die Ausführung mit Montage rechts/links parallel. Außer Motorausführung NM1 (entspricht der Steigungen einschließlich der Riemenübersetzung [1,25:1])

6 Hub [mm]

	Baug	röße			
	16	25			
50	•	•			
100	•	•			
150	_	•			

3 Motorausführung

Verwendb	ares Motormod	ell						Baı	ugröße/	Motora	ausführ	ung					
			16 25														
Hersteller	Serie	Ausführung	NZ Montagetyp Z	NY Montagetyp Y	NX Montagetyp X	NM1 Montagetyp M1M	NM2 Montagetyp M2	NM3 Montagetyp M3	NZ Montagetyp Z	NY Montagetyp Y	NX Montagetyp X	NW Montagetyp W	NV Montagetyp V	NU Montagetyp U	NT Montagetyp T	NM1 Montagetyp M1	NM2 1 Montagetyp M2
Mitsubishi Electric	MELSERVO-JN	HF-KN	•	_	_	_	_	_	•	_	_	_	_	_	_	_	_
Corporation	MELSERVO-J4	HG-KR	•	_	_	_	_	_	•	_	_	_	_	_	_	_	_
Corporation	MELSERVO-J5	HK-KT	•	_	_	_	_	_	•	_	_	_	_	_	_	_	_
YASKAWA Electric	Σ-V	SGMJV	•	_	_	_	_	_	•	_	_	_	_	_	_	_	_
Corporation	Σ-7	SGM7J/SGM7A	•	_	_	_	_	_	•	_	_	_	_	_	_	_	_
SANYO DENKI CO., LTD.	SANMOTION R	R2	•	_	_	_	_	_	•	_	_	_	_	_	_	_	_
OMRON Corporation	Sysmac G5	R88M-K	•	_	_	_	_	_	_	•	_	_	_	_	_	_	_
OWNON Corporation	1 S	R88M-1	•	_	_	_	_	_	_	•	_	_	_	_	_	_	_
	MINAS A5	MSM□/MHMD	_	•	_	_	_	_	_	•	_	_	_	_	_	_	_
Panasonic Corporation	MINAS A6	MSMF	_	•	_	_	_	_	_	•	_	_	_	_	_	_	_
	WIINAS AO	MHMF	•	_	_	_	_	_	_	•	_	_	_	_	_		_
FANUC CORPORATION	β is (-B)	β	•	_	_	_	_	_	(nur β 1)	_	_	•	_	_	_	_	_
NIDEC SANKYO CORPORATION	S-FLAG	MA/MH/MM	•	_	_	_	_	_	•	_	_	_	_	_	_	<u> </u>	_
KEYENCE	SV	SV-M/SV-B	•	_	_	_	_	_	•	_	_	_	_	_	_	_	_
CORPORATION	SV2	SV2-M/SV2-B	•	_	_	_	_	_	•	_	_	_	_	_	_	_	_
FILLE FOTDIO	ALPHA5	GYS/GYB	•	_	_	_	_	_	•	_	_	_	_	_	_	_	_
FUJI ELECTRIC	ALPHA7	GYS/GYB	•	_	_	_	_	_	•	_	_	_	_	_	_	_	_
CO., LTD.	FALDIC α	GYS	•	_	_	_	_	_	•	_	_	_	_	_	_	_	_
MinebeaMitsumi Inc.	SZ	A17PM/A23KM	_	_	_	● *1	_	● *2	_	_	_	_	_	_	_	• *2	_
Shinano Kenshi Co., Ltd.	CSB-BZ	CSB-BZ	_	_	_	●*1	_	● *2	_	_	_	_	_	_	_	_	_
ORIENTAL MOTOR	AR/AZ	AR/AZ (nur 46)	_	_	_	_	•	_	_	_	_	_	_	_	_	_	_
Co, Ltd.	AR/AZ	AR/AZ	_	_	_	_	_	_	_	_	_	_	_	_	_	_	•
FASTECH Co., Ltd.	Ezi-SERVO	EzM	_	_	_	•	_	_	_	_	_	_	_	_	_	•	l —
Rockwell Automation, Inc.	MP-/VP-	MP/VP	_	_	_	_	_	_	_	_	●*1	_	_	_	_	_	_
(Allen-Bradley)	TL	TLY-A	•	_	_	_	_	_	_	_	_	_	_	_	•	_	_
Dealth off Assess 11	AM	AM30	•	_	_	_	_	_	_	_	_	_	●*1	_	_	_	_
Beckhoff Automation GmbH	AM	AM31	•	_	_	_	_	_	_	_	_	_	_	•	_		_
	AM	AM80/AM81	•	_	_	_	_	_	_	_	●*1	_	_	_	_		_
Siemens AG	1FK7	1FK7	_	_	•	_	_	_	_	_	●*1	_	_	_	_	_	_
Delta Electronics, Inc.	ASDA-A2	ECMA	•	_	_	_	_	_	•	_	_	_	_	_	_		
ANCA Motion	AMD2000	Alpha	•	_	_	_	_	_	•	_	_	_	_	_	_	_	_

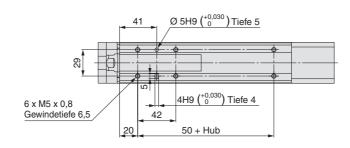
^{*1} Einbaulage des Motors: nur axial *2 Einbaulage des Motors: nur parallel

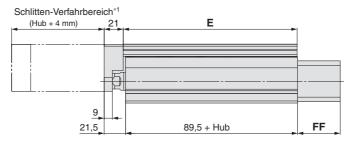
Technische Daten

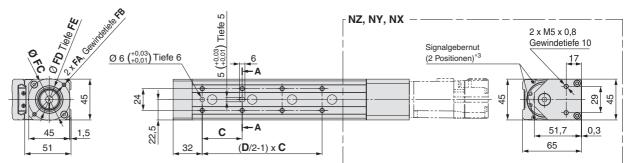
Modell Hub [mm]			YH16	LESYH2	5 (Parallel)		LESYH25 (Axial)						
	Hub [mm]			50,	100		0, 150						
	Nutzlast [k	ral .	horizontal*1	8	3	1	2	•	12				
		Ŭ-	vertikal	6	12	10	20	10	20				
w	Schubkraf (Sollwert: Ner		*2 moment 45 bis 90 %)	65 bis 131	127 bis 255	79 bis 157	9 bis 157 154 bis 308		192 bis 385				
Antriebs	max. Geso	hwir	ndigkeit [mm/s]	400	200	400	200	400	200				
ri i			ndigkeit [mm/s]*3	max. 35 max. 30									
A			ng/Verzögerung [mm/s²]	5000									
des			olgenauigkeit [mm]			±0	,01						
eu	Umkehrsp					max	. 0,1						
Dat	Spindeldurchmesser [mm]			Ø	10		Ø	12					
Technische Daten	Kugelum- laufspindel		lsteigung [mm] nließlich Riemenübersetzung)	12	6	16 (20)	8 (10)	16	8				
Ē			ellänge [mm]	Hub -	+ 93,5		104,5						
e.	Stoß-/Vibra	tions	estigkeit [m/s ²]*5	50/20									
	Funktionsweise				+ Riemen (parallel) spindel (axial)		indel + Riemen etzung 1.25:1]	Kugelum	aufspindel				
	Führung					Linearführung	(Kugelumlauf)						
	Betriebste	mpe	raturbereich [°C]	5 bis 40									
	Luftfeucht	igkei	itsbereich [%RH]	max. 90 (keine Kondensation)									
9* u	Gewicht		Hub 50	0,5			1,2	21					
ione	beweglich		Hub 100	0,9	919	1,68							
fikat	Masse [kg		Hub 150		_	2,19							
Sonstige Spezifikationen*6	Sonstige 1 [kg·cm ²]	Γrägh	neitsmomente	0,012 (LI 0,015 (LE	ESYH16) :SYH16D)		0,035 (LE 0,061 (LE						
nstig	Reibungsl	coeff	izient			0,	05						
Sol	Mechaniso	cher '	Wirkungsgrad			0	,8						
notors	Motorform	1			40			60					
eferenzi	Motorausf	ühru	ng			AC-Ser	vomotor						
n des Re	Nennausg	angs	leistung [W]	10	00		20	00					
Spezifikationen des Referenzmotors	Nenndrehi	mom	ent [Nm]	0,	32		0,6	64					
Spezifi	Nenndreh	zahl	[U/min]			30	000						

- *1 Dies ist der max. Wert der Horizontalnutzlast. Eine externe Führung ist notwendig, um die Last zu stützen (Reibungskoeffizient der Führung: 0,1 oder weniger). Die tatsächliche Nutzlast ändert sich je nach dem Zustand der externen Führung. Überprüfen Sie die Last anhand des tatsächlichen Gewichts.
- *2 Der Krafteinstellbereich für die Schubanwendung (Geschwindigkeitsteuerung, Drehmomentsteuerung) Die Schubkraft ändert sich entsprechend dem eingestellten Wert. Beachten Sie bei der Einstellung das "Kraftumwandlungsdiagramm (Orientierungshilfe)" auf Seite 21.
- *3 Die zulässige Geschwindigkeit für den Zusammenstoß mit dem Werkstück
- *4 Ein Richtwert zur Fehlerkorrektur im Umkehrbetrieb
- *5 Stoßfestigkeit: Beim Testen des Antriebs mittels Fallversuch sowohl in axiale als auch in vertikaler Richtung zur Gewindespindel ist keine Fehlfunktion aufgetreten. (Der Versuch erfolgte mit dem Antrieb in Startphase.) Vibrationsfestigkeit: Keine Fehlfunktion im versuch von 45 bis 2000 Hz. Der Fallversuch wurde sowohl in axialer als auch in vertikaler Richtung zur Gewindespindel durchgeführt. (Der Versuch erfolgte mit dem Antrieb in Startphase.)
- *6 Alle Werte sind nur als Orientierungshilfe für die Auswahl eines Motors mit der entsprechenden Leistung zu verwenden.

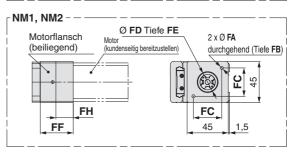
Gewicht

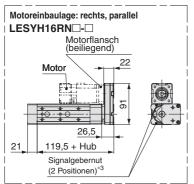

[kg]

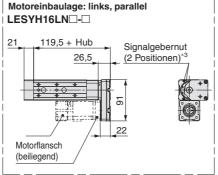

			[9]				
Modell	Hub						
Modell	50	100	150				
LESYH16	1,48	1,87	_				
LESYH25	2,77	3,37	4,77				


Abmessungen

LESYH16D□-□







Abmessungen [mm]												
Modell	Hub	С	D	Е								
LESYH16□□-50	50	40	6	116,5								
LESYH16□□-100	100	44	8	191,5								

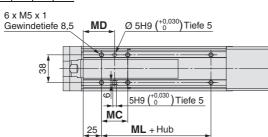
									[mm]
Größe	Motortyp	FA	FB	FC	FD	FE	FF	FG	FH
	NZ, NX	M4 x 0,7	7,5	46	30	3,7	47	45	_
LESYH16	NY	M3 x 0,5	6	45	30	4,2	47	45	_
LLSTIIIO	NM1	Ø 3,4	17	31	22	2,5	36	45	19
	NM2	Ø 3,4	28	31	22	2,5	47	45	30

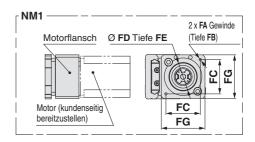
- Abmessungen des Motorflansches (Motoreinbaulage: parallel) NZ, NY, NX NM1, NM2, NM3 2 x **Ø FA** 2 x FA, Gewindetiefe FB 2 x Ø FB x FE FC Motor-Montagefläche FF FF E 요 PE Ē FG FG B-B E-E
- *1 Bereich, innerhalb dessen der Schlitten sich bewegen kann, wenn dieser zurück zur Referenzposition verfährt.
 - Stellen Sie sicher, dass am Schlitten angebrachte Werkstücke nicht die Werkstücke und Anlagenteile im Umfeld des Schlittens behindert.
- *2 Wenn die Schrauben zu lang sind, können sie mit dem Führungsblock in Berührung kommen und Fehlfunktionen verursachen.
- Verwenden Sie Schrauben, deren Länge die Gewindelänge nicht überschreitet.

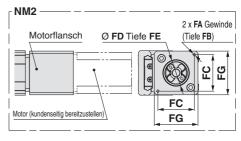
 ∗3 Zur Überprüfung von Grenz- und Zwischensignal. Verwendbar für D-M9□,
 D-M9□E und D-M9□W (2-farbige Anzeige)

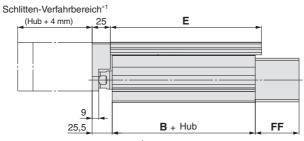
D-M9∐E und D-M9∐W (2-tarbige Anzeige)
Die Signalgeber müssen separat bestellt werden.

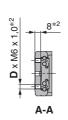
Abmessungen [mr											
Größe	Motortyp	FA	FB	FC	FD	FE	FF	FG			
	NZ	M4 x 0,7	7,5	46	30	3,7	11	42			
	NY	M3 x 0,5	5,5	45	30	5	11	38			
I EQVU16	NX	M4 x 0,7	7	46	30	3,7	8	42			
LESYH16	NM1/ NM2	Ø 3,4	7	31	28	3,5	8,5	42			
	NM3	Ø 3,4	7	31	28	3,5	5,5	42			

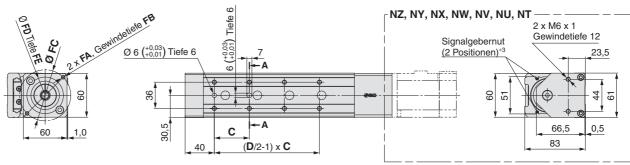


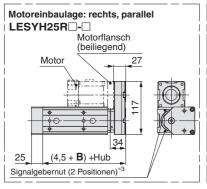

Motorlose Ausführung

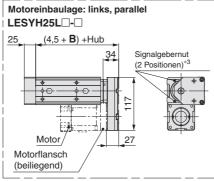

Abmessungen

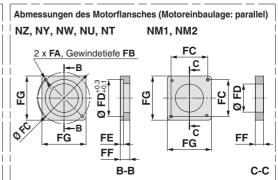

LESYH2	5D□-□								[mm]
Größe	Motortyp	FA	FB	FC	FD	FE	FF	FG	FH
	NZ, NW, NU, NT	M5 x 0,8	8,5	70	50	3,3	60	60	_
	NY	M4 x 0,7	8	70	50	3,3	60	60	_
LESYH25	NX	M5 x 0,8	8,5	63	40	3,5	63	60	_
LESTINZS	NV	M4 x 0,7	8	63	40	3,3	63	60	_
	NM1	M4 x 0,7	9,5	47,14	38,1	2	34	60	51,5
	NM2	M4 x 0,7	8	50	36	3,3	60	60	


Abmessungen [m											
Modell	Hub	В	ပ	D	Ш	MC	MD	M6			
LESYH25□□-50	50	50 156.3		4	143	36	43	50			
LESYH25□□-100	100	150,5	48	8	207	30	40	30			
LESYH25□□-150	150	186,3	68	0	285	53	51,5	80			







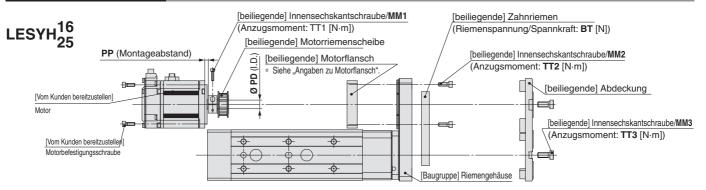


- *1 Bereich, innerhalb dessen der Schlitten sich bewegen kann, wenn dieser zurück zur Referenzposition verfährt.
 - Stellen Sie sicher, dass am Schlitten angebrachte Werkstücke nicht die Werkstücke und Anlagenteile im Umfeld des Schlittens behindert.
- *2 Wenn die Schrauben zu lang sind, können sie mit dem Führungsblock in Berührung kommen und Fehlfunktionen verursachen.
- Verwenden Sie Schrauben, deren Länge die Gewindelänge nicht überschreitet.

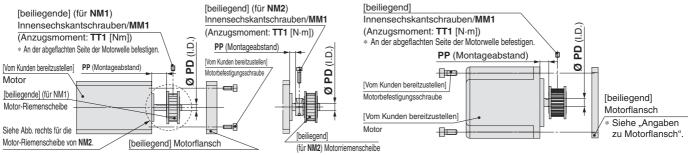
 ∗3 Zur Überprüfung von Grenz- und Zwischensignal. Verwendbar für D-M9□, D-M9□E und D-M9□W (2-farbige Anzeige)

 Die Signalgeber müssen separat bestellt werden. Für weitere Details siehe Web-Katalog

Abmessungen [i												
Größe	Motortyp	FA	FB	FC	FD	FE	FF	FG				
	NZ/NW/ NU	M5 x 0,8	8,5	70	50	4,6	13	60				
LESYH25	NY	M4 x 0,7	7	70	50	4,6	13	60				
LLSTIIZS	NT	M5 x 0,8	8,5	70	50	4,6	17	60				
	NM1	M4 x 0,7	(5)	47,1	38,2	_	5	56,4				
	NM2	M4 x 0,7	8	50	38,2	_	11,5	60				

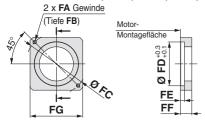


- Der Motor und die Befestigungsschrauben müssen kundenseitig bereitgestellt werden.
- Die Motorwelle sollte bei den Motorausführungen NZ, NY, NW und NM2 zylindrisch, bei den Motorausführungen NM1 und NM3 D-förmig ausgeführt sein.

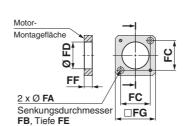

Motormontage: Parallel

Bei Montage der Riemenscheibe, Öl, Staub oder Schmutz vollständig von der Welle und aus dem Innenbereich der Riemenscheibe entfernen.
Entsprechende Maßnahmen ergreifen, um zu verhindern, dass sich die Motor-Montageschrauben lösen.

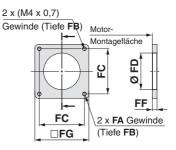
LESYH25: NM1



LESYH16: NM1, NM2, NM3

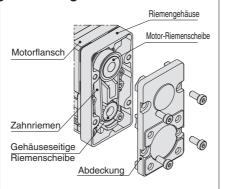


Angaben zu Motorflansch


LESYH16: NZ, NY, NX LESYH25: NZ, NY, NW, NU, NT

LESYH16: NM1, NM2, NM3

LESYH25: NM1, NM2


Abmessungen

Abme	ssungen																[mm]
Größe	Motorausführung	MM1	TT1	MM2	TT2	MM3	TT3	PD	PP	BT	FA	FB	FC	FD	FE	FF	FG
	NZ	M2,5 x 10	1,0	M3 x 8	0,63	M4 x 10	1,5	8	7,5	19	M4 x 0,7	7,5	46	30	3,7	11	42
	NY	M2,5 x 10	1,0	M3 x 8	0,63	M4 x 10	1,5	8	7,5	19	M3 x 0,5	5,5	45	30	5	11	38
16	NX	M2,5 x 10	1,0	M3 x 8	0,63	M4 x 10	1,5	8	4,5	19	M4 x 0,7	7	46	30	3,7	8	42
10	NM1	M3 x 5	0,63	M3 x 8	0,63	M4 x 10	1,5	5	11,8	19	Ø 3,4	7	31	28	3,5	8,5	42
	NM2	M2,5 x 10	1,0	M3 x 8	0,63	M4 x 10	1,5	6	4,8	19	Ø 3,4	7	31	28	3,5	8,5	42
	NM3	M3 x 5	0,63	M3 x 8	0,63	M4 x 10	1,5	5	8,8	19	Ø 3,4	7	31	28	3,5	5,5	42
	NZ	M3 x 12	1,5	M4 x 12	1,5	M6 x 14	5,2	14	4,5	30	M5 x 0,8	8,5	70	50	4,6	13	60
	NY	M3 x 12	1,5	M4 x 12	1,5	M6 x 14	5,2	11	4,5	30	M4 x 0,7	7	70	50	4,6	13	60
	NW	M4 x 12	3,6	M4 x 12	1,5	M6 x 14	5,2	9	4,5	30	M5 x 0,8	8,5	70	50	4,6	13	60
25	NU	M3 x 12	1,5	M4 x 12	1,5	M6 x 14	5,2	11	4,5	30	M5 x 0,8	8,5	70	50	4,6	13	60
	NT	M3 x 12	1,5	M4 x 12	1,5	M6 x 14	5,2	12	8,5	30	M5 x 0,8	8,5	70	50	4,6	17	60
	NM1	M3 x 5	0,63	M4 x 12	1,5	M6 x 14	5,2	6,35	8	30	M4 x 0,7	(5)	47,1	38,2		5	56,4
	NM2	M3 x 12	1,5	M4 x 12	1,5	M6 x 14	5,2	10	3	30	M4 x 0,7	8	50	38,2	_	11,5	60

Motor-Montagezeichnung

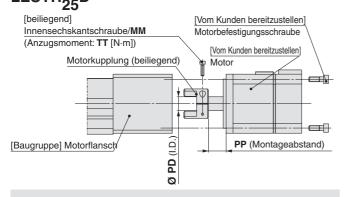
Montageverfahren

- Befestigen Sie die Riemenscheibe mit der Innensechskantschraube am Motor (vom Kunden bereitzustellen).
- Befestigen Sie den Motor mit den Befestigungsschrauben (vom Kunden bereitzustellen) am Motorflansch.
- Den Zahnriemen auf beide Riemenscheiben auflegen und mit den Innensechskantschrauben vorübergehend befestigen. (Siehe Montage-Zeichnung.)
- Der Riemen wird gespannt und die Schrauben vollständig angezogen. (als Orientierungshilfe gilt, dass kein Durchhang des Riemens vorhanden ist).
- 5) Befestigen Sie das Abdeckung.

Stückliste

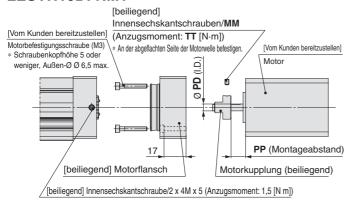
Größe: 16, 25

	Menge					
Beschreibung	Motorty	р				
	NZ/NY/NW/NT/NM2	NM1/NM3				
Motorflansch	1	1				
Motor-Riemenscheibe	1	1				
Abdeckung	1	1				
Zahnriemen	1	1				
Innensechskantschraube	4	4				
(zur Montage der Abdeckung)						
Innensechskantschraube (zur Montage des Motorflansches)	2	2				
Innensechskantschraube (zur Befestigung der Riemenscheibe)	1	_				
Innensechskantschraube (zur Befestigung der Riemenscheibe)	_	1				



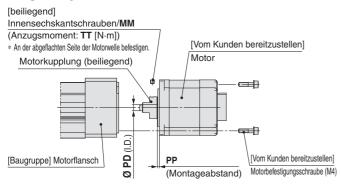
Motormontage: axial

Motorlose Ausführung


- Der Motor und die Befestigungsschrauben müssen kundenseitig bereitgestellt werden.
- Die Motorwelle sollte bei den Motorausführungen NZ, NY, NW und NM2 zylindrisch, bei der Motorausführung NM1 D-förmig ausgeführt sein.
- Bei Montage einer Kupplung, Öl, Staub oder Verschmutzungen vollständig von der Welle und aus dem Innenbereich der Kupplung entfernen.
- Entsprechende Maßnahmen ergreifen, um zu verhindern, dass sich die Montageschrauben lösen.

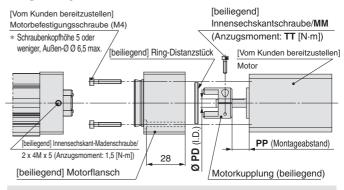
Montage

- 1) Befestigen Sie die Motorkupplung am Motor (vom Kunden bereitzustellen).
- 2) Die Position der Kupplung prüfen und einschieben. (Siehe Montage-Zeichnung.)
- Befestigen Sie den Motor mit den Befestigungsschrauben (vom Kunden bereitzustellen) am Motorflansch.

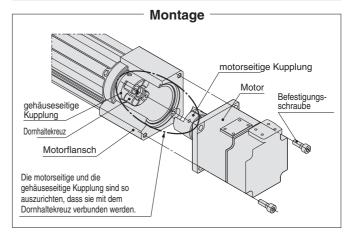

LESYH16D: NM1

Montage

- 1) Befestigen Sie die Motorkupplung am Motor (vom Kunden bereitzustellen).
- 2) Befestigen Sie den Motor mit den Befestigungsschrauben (vom Kunden bereitzustellen) am Motorflansch.
- 3) Die Position der Kupplung prüfen und einschieben. (Siehe Montage-Zeichnung.)
- 4) Befestigen Sie den Motorflansch.


LESYH25D: NM1

Montage


- 1) Befestigen Sie die Motokupplung am Motor (kundenseitig bereitzustellen).
- 2) Die Position der Kupplung prüfen und einschieben. (Siehe Montage-Zeichnung.)
- Befestigen Sie den Motor mit den Befestigungsschrauben (vom Kunden bereitzustellen) am Motorblock.

LESYH16D: NM2

Montage

- 1) Der Distanzrring auf den Motor (vom Kunden bereitzustellen) setzen.
- 2) Befestigen Sie die Motorkupplung am Motor (vom Kunden bereitzustellen).
- 3) Befestigen Sie den Motor mit den Befestigungsschrauben (vom Kunden bereitzustellen) am Motorflansch.
- 4) Die Position der Kupplung prüfen und einschieben. (Siehe Montage-Zeichnung.)
- 5) Befestigen Sie den Motorflansch.

Abme	ssungen				[mm]
Größe	Motorausführung	MM	TT	PD	PP
	NZ	M2,5 x 10	1,0	8	12,5
	NY	M2,5 x 10	1,0	8	12,5
16	NX	M2,5 x 10	1,0	8	7
	NM1	M3 x 5	0,63	5	10,5
	NY NX	M2,5 x 10	1,0	6	12,4
	NZ	M3 x 12	1,5	14	18
	NY	M4 x 12	3,6	11	18
	NX	M4 x 12	3,6	9	5
	NW	M4 x 12	3,6	9	12
25	NV	M4 x 12	3,6	9	5
	NU	M4 x 12	3,6	11	12
	NT	M3 x 12	1,5	12	18
	NM1	M4 x 5	1,5	6,35	2,1
	NM2	M4 x 12	3,6	10	12

Stückliste

Größe: 16

Grobe: 16								
	Menge							
Beschreibung	Motortyp							
	NZ/NY/NX	NM1	NM2					
Motorkupplung	1	1	1					
Innensechskantschraube (zur Befestigung der Kupplung)	1	_	1					
Motorflansch	_	1	1					
Innensechskantschraube (zur Befestigung der Kupplung)		1	_					
Innensechskantschraube (zur Befestigung des Motorflansches)		2	2					
Ring-Distanzstück	_		1					

Größe: 25

	Meng	ge
	Motort	ур
Beschreibung	NZ/NY/NX/ NW/NV/NU/ NT/NM2	NM1
Motorkupplung	1	1
Innensechskantschraube (zur Befestigung der Kupplung)	1	_
Innensechskantschraube (zur Befestigung der Kupplung)	1	1

Serie LESYH Teile für die Motormontage

Option Motorflansch

Bei Verwendung dieser Option kann der Motor durch die nachfolgend genannten Motorausführungen getauscht werden. Die verwendbaren Motortypen sind nachfolgende aufgeführt.

(ausgenommen "NM1" und "NM3")

Verwenden Sie die folgenden Bestellnummern, um eine entsprechende Motorflanschoption auszuwählen.

Parallel

Gerade

D

Bestellschlüssel

Baugröße

25 Für LESYH16 32 Für LESYH25 2 Motoreinbaulage 3 Motorausführung

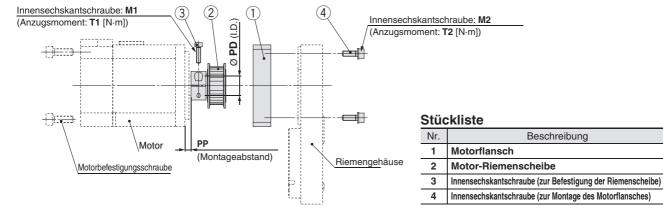
Symbol	Ausführung	Symbol	Ausführung
NZ	Montagetyp Z	NV	Montagetyp V
NY	Montagetyp Y	NU	Montagetyp U
NX	Montagetyp X	NT	Montagetyp T
NW	Montagetyp W	NM2	Montageart M2

^{*} Siehe "Kompatible Motoren".

Kompatible Motoren

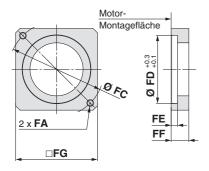
Verwend	lbares Motormode	II					Antrieb/Motorausführung							
				LES	/H16					LES	YH25			
Hersteller	Serie	Ausführung	NZ Montagetyp Z	NY Montagetyp Y	NX Montagetyp X	NM2 Montagetyp M2	NZ Montagetyp Z	NY Montagetyp Y	NX Montagetyp X	NW Montagetyp W	NV Montagetyp V	NU Montagetyp U	NT Montagetyp T	NM2 Montagetyp M2
	MELSERVO-JN	HF-KN	•	_	_	_	•	_	_	_	_	_	_	_
Mitsubishi Electric Corporation	MELSERVO-J4	HG-KR	•	_	_	_	•	_	_	_	_	_	_	_
Corporation	MELSERVO-J5	HK-KT	•	_	_	_	•	_	_	_	_	_	_	_
YASKAWA Electric	Σ-V	SGMJV	•	_	_	_	•	_	_	_	_	_	_	_
Corporation	Σ-7	SGM7J/SGM7A	•	_	_	_	•	_	_	_	_	_	_	_
SANYO DENKI CO., LTD.	SANMOTION R	R2	•	_	_	_	•	_	_	_	_	_	_	_
OMRON Corporation	Sysmac G5	R88M-K	•	_	_	_	_	•	_	_	_	_	_	_
OWNON Corporation	1 S	R88M-1	•	_	_	_	_	•	_	_	_	_	_	_
Panasonic	MINAS A5	MSM□/MHMD	_	•	_	_	_	•	_	_	_	_	_	_
Corporation	MINAS A6	MSMF	_	•	_	_	_	•	_	_	_	_	_	_
Corporation	WIINAS AU	MHMF	•	_	_	_	_	•	_	_	_	_	_	_
FANUC CORPORATION	β is (-B)	β	•	_	_	_	(nur β1)	_	_	•		_	_	_
NIDEC SANKYO CORPORATION	S-FLAG	MA/MH/MM	•	_	_	_	•	_	_	_	_	_	_	_
KEYENCE	SV	SV-M/SV-B	•	_	_	_	•	_	_	_	_	_	_	_
CORPORATION	SV2	SV2-M/SV2-B	•	_	_	_	•	_	_	_	_	_	_	_
FILLE FOTDIO OO	ALPHA5	GYS/GYB	•	_	_	_	•	_	_	_	_	_	_	_
FUJI ELECTRIC CO., LTD.	ALPHA7	GYS/GYB	•	_	_	_	•	_	_	_	_	_	_	_
	FALDIC α	GYS	•	_	_	_	•	_	_	_	_	_	_	_
MinebeaMitsumi Inc.	SZ	A17PM/A23KM	_	_	_	_	_	_	_	_	_	_	_	_
Shinano Kenshi Co., Ltd.	CSB-BZ	CSB-BZ		_		_	_	_	_	_	_		_	_
ORIENTAL MOTOR	AR/AZ	AR/AZ (nur 46)	_	_	_	•	_	_	_	_	_	_	_	_
Co, Ltd.	AR/AZ	AR/AZ	_	_	_	_	_	_	_	_	_	_	_	•
FASTECH Co., Ltd.	Ezi-SERVO	EzM		_		_	_	_	_	_	_		_	_
Rockwell Automation,	MP-/VP-	MP/VP	_	_	_	_	_	_	●*1	_	_	_	_	_
Inc. (Allen-Bradley)	TL	TLY-A	•	_	_	_	_	_	_	_	_	_	•	_
Beckhoff Automation	AM	AM30	•	_		_	_	_	_	_	● *1		_	
GmbH	AM	AM31	•	_		_	_	_	_	_	_	•	_	
	AM	AM80/AM81	•	_		_	_	_	●*1	_	_		_	_
Siemens AG	1FK7	1FK7	_	_	•	_	_	_	●*1	_	_	_	_	_
Delta Electronics, Inc.	ASDA-A2	ECMA	•			_	•	_	_	_			_	_
ANCA Motion	AMD2000	Alpha	•	_	_	_	•	_	_	_	_	_	_	_

^{*} Bei der Bestellung des LESYH₂₅¹⁶□_{NM3}□-□ ist der Tausch zu anderen Motorausführungen nicht möglich.

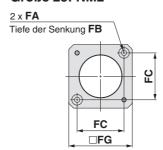

^{*} Bitte beachten Sie, dass die Baugröße in der Bezeichnung des Motorflansches nicht mit der Baugröße des Antriebs übereinstimmt.

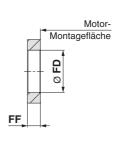
^{*1} Einbaulage des Motors: nur axial

Serie LESYH


Abmessungen: Option Motorflansch

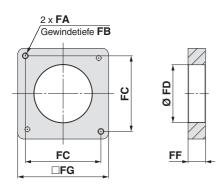
Einbaulage des Motors: parallel




Angaben zu Motorflansch

Größe: 25, 32

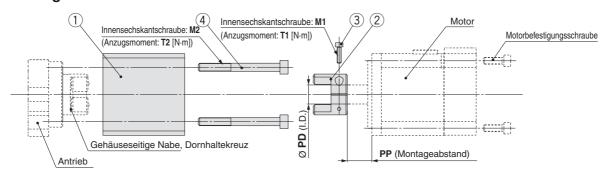
Größe 25: NM2

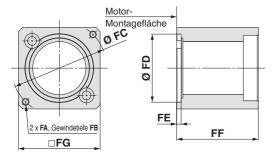

Menge

1

1

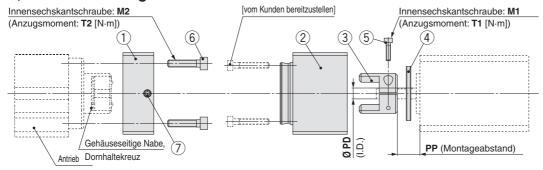
2

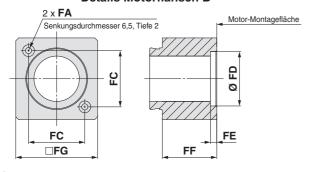

Größe 32: NM2


Abmessi	ungen													[mm]
Größe	Motorausführung	FA	FB	FC	FD	FE	FF	FG	M1	T1	M2	T2	PD	PP
	NZ	M4 x 0,7	7,5	46	30	3,7	11	42	M2,5 x 10	1,0	M3 x 8	0,63	8	7,5
25	NY	M3 x 0,5	5,5	45	30	5	11	42	M2,5 x 10	1,0	M3 x 8	0,63	8	7,5
(LESYH16)	NX	M4 x 0,7	7	46	30	3,7	8	42	M2,5 x 10	1,0	M3 x 8	0,63	8	4,5
	NM2	Ø 3,4	7	31	30	3,7	8,5	42	M2,5 x 10	1,0	M3 x 8	0,63	6	4,8
	NZ	M5 x 0,8	8,5	70	50	4,6	13	60	M3 x 12	1,5	M4 x 12	1,5	14	4,5
	NY	M4 x 0,7	7	70	50	4,6	13	60	M3 x 12	1,5	M4 x 12	1,5	11	4,5
32	NW	M5 x 0,8	8,5	70	50	4,6	13	60	M4 x 12	3,6	M4 x 12	1,5	9	4,5
(LESYH25)	NU	M5 x 0,8	8,5	70	50	4,6	13	60	M3 x 12	1,5	M4 x 12	1,5	11	4,5
	NT	M5 x 0,8	8,5	70	50	4,6	17	60	M3 x 12	1,5	M4 x 12	1,5	12	8,5
	NM2	M4 x 0,7	8	50	38,2	_	11,5	60	M3 x 12	1,5	M4 x 12	1,5	10	3

Abmessungen: Option Motorflansch

Motoreinbaulage: inline


Angaben zu Motorflansch


Stückliste

Nr.	Beschreibung	Menge				
1	Motorflansch	1				
2	Motorkupplung	1				
3	Innensechskantschraube (zur Befestigung der Nabe)					
4	Innensechskantschraube (zur Befestigung des Motorblocks)	2				

Größe: 25, Motorausführung: NM2

Details Motorflansch B

Stückliste

Nr.	Beschreibung	Menge		
1	Motorflansch A	1		
2	Motorflansch B	1		
3	Motorkupplung	1		
4	Ring-Distanzstück	1		
5	Innensechskantschraube (zur Befestigung der Nabe)	1		
6	Innensechskantschraube (zur Befestigung des Motorflansches A)	2		
7	Innensechskantschraube (zur Befestigung des Motorflansches B)	2		

Abmessungen													[mm]	
Größe	Motorausführung	FA	FB	FC	FD	FE	FF	FG	M1	T1	M2	T2	PD	PP
	NZ	M4 x 0,7	7,5	46	30	3,7	47	45	M2,5 x 10	1,0	M4 x 40	1,5	8	12,5
25 (LESYH16)	NY	M3 x 0,5	6	45	30	4,2	47	45	M2,5 x 10	1,0	M4 x 40	1,5	8	12,5
	NX	M4 x 0,7	7,5	46	30	3,7	47	45	M2,5 x 10	1,0	M4 x 40	1,5	8	7
	NM2	Ø 3,4	28	31	22	2,5	30	45	M2,5 x 10	1,0	M4 x 40	1,5	6	12,4
32 (LESYH25)	NZ	M5 x 0,8	8,5	70	50	3,3	60	60	M3 x 12	1,5	M6 x 60	5,2	14	18
	NY	M4 x 0,7	8	70	50	3,3	60	60	M4 x 12	3,6	M6 x 60	5,2	11	18
	NX	M5 x 0,8	8,5	63	40	3,5	63	60	M4 x 12	3,6	M6 x 60	5,2	9	5
	NW	M5 x 0,8	8,5	70	50	3,3	60	60	M4 x 12	3,6	M6 x 60	5,2	9	12
	NV	M4 x 0,7	8	63	40	3,3	63	60	M4 x 12	3,6	M6 x 60	5,2	9	5
	NU	M5 x 0,8	8,5	70	50	3,3	60	60	M4 x 12	3,6	M6 x 60	5,2	11	12
	NT	M5 x 0,8	8,5	70	50	3,3	60	60	M3 x 12	1,5	M6 x 60	5,2	12	18
	NM2	M4 x 0,7	8	50	36	3,3	60	60	M4 x 12	3,6	M6 x 60	5,2	10	12

Elektrischer Antrieb Elektrischer Kompaktschlitten, hochsteife Ausführung

SMC Corporation

SMC CORPORATION
Akihabara UDX 15F, 4-14-1, Sotokanda, Chiyoda-ku, Tokyo 101-0021, JAPAN Phone: 03-5207-8249 FAX: 03-5298-5362
SMC CORPORATION All Rights Reserved

European Marketing Centre (EMC)

Zuazobidea 14, 01015 Vitoria Tel: +34 945-184 100 Fax: +34 945-184 124 URL http://www.smc.eu